summaryrefslogtreecommitdiff
path: root/kernel/typeops.ml
blob: 66b2e24d7bea04e83e1cf4bd3083ae05182e4177 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id: typeops.ml,v 1.89.2.1 2004/07/16 19:30:28 herbelin Exp $ *)

open Util
open Names
open Univ
open Term
open Declarations
open Sign
open Environ
open Entries
open Reduction
open Inductive
open Type_errors


(* This should be a type (a priori without intension to be an assumption) *)
let type_judgment env j =
  match kind_of_term(whd_betadeltaiota env (body_of_type j.uj_type)) with
    | Sort s -> {utj_val = j.uj_val; utj_type = s }
    | _ -> error_not_type env j

(* This should be a type intended to be assumed. The error message is *)
(* not as useful as for [type_judgment]. *)
let assumption_of_judgment env j =
  try (type_judgment env j).utj_val
  with TypeError _ ->
    error_assumption env j

(*
let aojkey = Profile.declare_profile "assumption_of_judgment";;
let assumption_of_judgment env j
  = Profile.profile2 aojkey assumption_of_judgment env j;;
*)

(************************************************)
(* Incremental typing rules: builds a typing judgement given the *)
(* judgements for the subterms. *)

(*s Type of sorts *)

(* Prop and Set *)

let judge_of_prop =
  { uj_val = body_of_type mkProp;
    uj_type = mkSort type_0 }

let judge_of_set =
  { uj_val = body_of_type mkSet;
    uj_type = mkSort type_0 }

let judge_of_prop_contents = function
  | Null -> judge_of_prop
  | Pos -> judge_of_set

(* Type of Type(i). *)

let judge_of_type u =
  let uu = super u in
  { uj_val = body_of_type (mkType u);
    uj_type = mkType uu }

(*s Type of a de Bruijn index. *)
	  
let judge_of_relative env n = 
  try
    let (_,_,typ) = lookup_rel n env in
    { uj_val  = mkRel n;
      uj_type = type_app (lift n) typ }
  with Not_found -> 
    error_unbound_rel env n

(*
let relativekey = Profile.declare_profile "judge_of_relative";;
let judge_of_relative env n =
  Profile.profile2 relativekey judge_of_relative env n;;
*)

(* Type of variables *)
let judge_of_variable env id =
  try
    let (_,_,ty) = lookup_named id env in
    make_judge (mkVar id) ty
  with Not_found -> 
    error_unbound_var env id

(* Management of context of variables. *)

(* Checks if a context of variable can be instanciated by the
   variables of the current env *)
(* TODO: check order? *)
let rec check_hyps_inclusion env sign =
  let env_sign = named_context env in
  Sign.fold_named_context
    (fun (id,_,ty1) () ->
      let (_,_,ty2) = Sign.lookup_named id env_sign in
      if not (eq_constr ty2 ty1) then
        error "types do not match")
    sign
    ~init:()


let check_args env c hyps =
  let hyps' = named_context env in
  try check_hyps_inclusion env hyps
  with UserError _ | Not_found ->
    error_reference_variables env c


(* Checks if the given context of variables [hyps] is included in the
   current context of [env]. *)
(*
let check_hyps id env hyps =
  let hyps' = named_context env in
  if not (hyps_inclusion env hyps hyps') then
    error_reference_variables env id
*)
(* Instantiation of terms on real arguments. *)

(* Type of constants *)
let judge_of_constant env cst =
  let constr = mkConst cst in
  let _ =
    let ce = lookup_constant cst env in
    check_args env constr ce.const_hyps in 
  make_judge constr (constant_type env cst)

(*
let tockey = Profile.declare_profile "type_of_constant";;
let type_of_constant env c 
  = Profile.profile3 tockey type_of_constant env c;;
*)

(* Type of a lambda-abstraction. *)

(* [judge_of_abstraction env name var j] implements the rule

 env, name:typ |- j.uj_val:j.uj_type     env, |- (name:typ)j.uj_type : s
 -----------------------------------------------------------------------
          env |- [name:typ]j.uj_val : (name:typ)j.uj_type

  Since all products are defined in the Calculus of Inductive Constructions
  and no upper constraint exists on the sort $s$, we don't need to compute $s$
*)

let judge_of_abstraction env name var j =
  { uj_val = mkLambda (name, var.utj_val, j.uj_val);
    uj_type = mkProd (name, var.utj_val, j.uj_type) }

(* Type of let-in. *)

let judge_of_letin env name defj typj j =
  { uj_val = mkLetIn (name, defj.uj_val, typj.utj_val, j.uj_val) ;
    uj_type = type_app (subst1 defj.uj_val) j.uj_type }

(* Type of an application. *)

let judge_of_apply env funj argjv =
  let rec apply_rec n typ cst = function
    | [] -> 
	{ uj_val  = mkApp (j_val funj, Array.map j_val argjv);
          uj_type = typ },
	cst
    | hj::restjl ->
        (match kind_of_term (whd_betadeltaiota env typ) with
          | Prod (_,c1,c2) ->
	      (try 
		let c = conv_leq env hj.uj_type c1 in
		let cst' = Constraint.union cst c in
		apply_rec (n+1) (subst1 hj.uj_val c2) cst' restjl
	      with NotConvertible -> 
		error_cant_apply_bad_type env
		  (n,c1, hj.uj_type)
		  funj argjv)

          | _ ->
	      error_cant_apply_not_functional env funj argjv)
  in 
  apply_rec 1
    funj.uj_type
    Constraint.empty
    (Array.to_list argjv)

(* Type of product *)

let sort_of_product env domsort rangsort =
  match (domsort, rangsort) with
    (* Product rule (s,Prop,Prop) *) 
    | (_,       Prop Null)  -> rangsort
    (* Product rule (Prop/Set,Set,Set) *)
    | (Prop _,  Prop Pos) -> rangsort
    (* Product rule (Type,Set,?) *)
    | (Type u1, Prop Pos) ->
        if engagement env = Some ImpredicativeSet then
          (* Rule is (Type,Set,Set) in the Set-impredicative calculus *)
          rangsort
        else
          (* Rule is (Type_i,Set,Type_i) in the Set-predicative calculus *)
          domsort
    (* Product rule (Prop,Type_i,Type_i) *)
    | (Prop _,  Type _)  -> rangsort
    (* Product rule (Type_i,Type_i,Type_i) *) 
    | (Type u1, Type u2) -> Type (sup u1 u2)

(* [judge_of_product env name (typ1,s1) (typ2,s2)] implements the rule

    env |- typ1:s1       env, name:typ1 |- typ2 : s2
    -------------------------------------------------------------------------
         s' >= (s1,s2), env |- (name:typ)j.uj_val : s'

  where j.uj_type is convertible to a sort s2
*)
let judge_of_product env name t1 t2 =
  let s = sort_of_product env t1.utj_type t2.utj_type in
  { uj_val = mkProd (name, t1.utj_val, t2.utj_val);
    uj_type = mkSort s }

(* Type of a type cast *)

(* [judge_of_cast env (c,typ1) (typ2,s)] implements the rule

    env |- c:typ1    env |- typ2:s    env |- typ1 <= typ2
    ---------------------------------------------------------------------
         env |- c:typ2
*)

let judge_of_cast env cj tj =
  let expected_type = tj.utj_val in
  try 
    let cst = conv_leq env cj.uj_type expected_type in
    { uj_val = mkCast (j_val cj, expected_type);
      uj_type = expected_type },
    cst
  with NotConvertible ->
    error_actual_type env cj expected_type

(* Inductive types. *)

let judge_of_inductive env i =
  let constr = mkInd i in
  let _ =
    let (kn,_) = i in
    let mib = lookup_mind kn env in
    check_args env constr mib.mind_hyps in 
  make_judge constr (type_of_inductive env i)

(*
let toikey = Profile.declare_profile "judge_of_inductive";;
let judge_of_inductive env i
  = Profile.profile2 toikey judge_of_inductive env i;;
*)

(* Constructors. *)

let judge_of_constructor env c =
  let constr = mkConstruct c in
  let _ =
    let ((kn,_),_) = c in
    let mib = lookup_mind kn env in
    check_args env constr mib.mind_hyps in 
  make_judge constr (type_of_constructor env c)

(*
let tockey = Profile.declare_profile "judge_of_constructor";;
let judge_of_constructor env cstr
  = Profile.profile2 tockey judge_of_constructor env cstr;;
*)

(* Case. *)

let check_branch_types env cj (lft,explft) = 
  try conv_leq_vecti env lft explft
  with
      NotConvertibleVect i ->
        error_ill_formed_branch env cj.uj_val i lft.(i) explft.(i)
    | Invalid_argument _ ->
        error_number_branches env cj (Array.length explft)

let judge_of_case env ci pj cj lfj =
  let indspec =
    try find_rectype env cj.uj_type
    with Not_found -> error_case_not_inductive env cj in
  let _ = check_case_info env (fst indspec) ci in
  let (bty,rslty,univ) =
    type_case_branches env indspec pj cj.uj_val in
  let (_,kind) = dest_arity env pj.uj_type in
  let lft = Array.map j_type lfj in
  let univ' = check_branch_types env cj (lft,bty) in
  ({ uj_val  = mkCase (ci, (*nf_betaiota*) pj.uj_val, cj.uj_val,
                       Array.map j_val lfj);
     uj_type = rslty },
  Constraint.union univ univ')

(*
let tocasekey = Profile.declare_profile "judge_of_case";;
let judge_of_case env ci pj cj lfj
  = Profile.profile6 tocasekey judge_of_case env ci pj cj lfj;;
*)

(* Fixpoints. *)

(* Checks the type of a general (co)fixpoint, i.e. without checking *)
(* the specific guard condition. *)

let type_fixpoint env lna lar vdefj =
  let lt = Array.length vdefj in
  assert (Array.length lar = lt);
  try
    conv_leq_vecti env
      (Array.map (fun j -> body_of_type j.uj_type) vdefj)
      (Array.map (fun ty -> lift lt ty) lar)
  with NotConvertibleVect i ->
    error_ill_typed_rec_body env i lna vdefj lar

(************************************************************************)
(************************************************************************)

(* This combinator adds the universe constraints both in the local
   graph and in the universes of the environment. This is to ensure
   that the infered local graph is satisfiable. *)
let univ_combinator (cst,univ) (j,c') =
  (j,(Constraint.union cst c', merge_constraints c' univ))

(* The typing machine. *)
    (* ATTENTION : faudra faire le typage du contexte des Const,
    Ind et Constructsi un jour cela devient des constructions
    arbitraires et non plus des variables *)
let rec execute env cstr cu =
  match kind_of_term cstr with
    (* Atomic terms *)
    | Sort (Prop c) -> 
	(judge_of_prop_contents c, cu)

    | Sort (Type u) ->
	(judge_of_type u, cu)

    | Rel n -> 
	(judge_of_relative env n, cu)

    | Var id -> 
	(judge_of_variable env id, cu)

    | Const c ->
        (judge_of_constant env c, cu)

    (* Lambda calculus operators *)
    | App (f,args) ->
	let (j,cu1) = execute env f cu in
        let (jl,cu2) = execute_array env args cu1 in
	univ_combinator cu2
	  (judge_of_apply env j jl)
	    
    | Lambda (name,c1,c2) -> 
        let (varj,cu1) = execute_type env c1 cu in
	let env1 = push_rel (name,None,varj.utj_val) env in
        let (j',cu2) = execute env1 c2 cu1 in 
        (judge_of_abstraction env name varj j', cu2)
	  
    | Prod (name,c1,c2) ->
        let (varj,cu1) = execute_type env c1 cu in
	let env1 = push_rel (name,None,varj.utj_val) env in
        let (varj',cu2) = execute_type env1 c2 cu1 in
	(judge_of_product env name varj varj', cu2)

    | LetIn (name,c1,c2,c3) ->
        let (j1,cu1) = execute env c1 cu in
        let (j2,cu2) = execute_type env c2 cu1 in
        let (_,cu3) = univ_combinator cu2 (judge_of_cast env j1 j2) in
        let env1 = push_rel (name,Some j1.uj_val,j2.utj_val) env in
        let (j',cu4) = execute env1 c3 cu3 in
        (judge_of_letin env name j1 j2 j', cu4)
	  
    | Cast (c,t) ->
        let (cj,cu1) = execute env c cu in
        let (tj,cu2) = execute_type env t cu1 in
	univ_combinator cu2
          (judge_of_cast env cj tj)

    (* Inductive types *)
    | Ind ind ->
	(judge_of_inductive env ind, cu)

    | Construct c -> 
	(judge_of_constructor env c, cu)

    | Case (ci,p,c,lf) ->
        let (cj,cu1) = execute env c cu in
        let (pj,cu2) = execute env p cu1 in
        let (lfj,cu3) = execute_array env lf cu2 in
        univ_combinator cu3
          (judge_of_case env ci pj cj lfj)
  
    | Fix ((vn,i as vni),recdef) ->
        let ((fix_ty,recdef'),cu1) = execute_recdef env recdef i cu in
        let fix = (vni,recdef') in
        check_fix env fix;
	(make_judge (mkFix fix) fix_ty, cu1)
	  
    | CoFix (i,recdef) ->
        let ((fix_ty,recdef'),cu1) = execute_recdef env recdef i cu in
        let cofix = (i,recdef') in
        check_cofix env cofix;
	(make_judge (mkCoFix cofix) fix_ty, cu1)

    (* Partial proofs: unsupported by the kernel *)
    | Meta _ ->
	anomaly "the kernel does not support metavariables"

    | Evar _ ->
	anomaly "the kernel does not support existential variables"

and execute_type env constr cu = 
  let (j,cu1) = execute env constr cu in
  (type_judgment env j, cu1)
	  
and execute_recdef env (names,lar,vdef) i cu =
  let (larj,cu1) = execute_array env lar cu in
  let lara = Array.map (assumption_of_judgment env) larj in
  let env1 = push_rec_types (names,lara,vdef) env in
  let (vdefj,cu2) = execute_array env1 vdef cu1 in
  let vdefv = Array.map j_val vdefj in
  let cst = type_fixpoint env1 names lara vdefj in
  univ_combinator cu2
    ((lara.(i),(names,lara,vdefv)),cst)

and execute_array env v cu =
  let (jl,cu1) = execute_list env (Array.to_list v) cu in
  (Array.of_list jl, cu1)

and execute_list env l cu =
  match l with
  | [] -> 
      ([], cu)
  | c::r -> 
      let (j,cu1) = execute env c cu in 
      let (jr,cu2) = execute_list env r cu1 in
      (j::jr, cu2)

(* Derived functions *)
let infer env constr =
  let (j,(cst,_)) =
    execute env constr (Constraint.empty, universes env) in
  let j = if j.uj_val = constr then { j with uj_val = constr } else
    (error "Kernel built a body different from its input\n";
     flush stdout; j) in
  (j, cst)

let infer_type env constr =
  let (j,(cst,_)) =
    execute_type env constr (Constraint.empty, universes env) in
  (j, cst)

let infer_v env cv =
  let (jv,(cst,_)) =
    execute_array env cv (Constraint.empty, universes env) in
  (jv, cst)
 
(* Typing of several terms. *)

let infer_local_decl env id = function
  | LocalDef c -> 
      let (j,cst) = infer env c in
      (Name id, Some j.uj_val, j.uj_type), cst
  | LocalAssum c ->
      let (j,cst) = infer env c in
      (Name id, None, assumption_of_judgment env j), cst

let infer_local_decls env decls =
  let rec inferec env = function
  | (id, d) :: l -> 
      let env, l, cst1 = inferec env l in
      let d, cst2 = infer_local_decl env id d in
      push_rel d env, add_rel_decl d l, Constraint.union cst1 cst2
  | [] -> env, empty_rel_context, Constraint.empty in
  inferec env decls

(* Exported typing functions *)

let typing env c = 
  let (j,cst) = infer env c in
  let _ = add_constraints cst env in
  j