summaryrefslogtreecommitdiff
path: root/interp/notation.ml
blob: e27518653cf7079aa53b633926761e25742ae15a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(*i*)
open CErrors
open Util
open Pp
open Names
open Constr
open Libnames
open Globnames
open Constrexpr
open Notation_term
open Glob_term
open Glob_ops
open Context.Named.Declaration

(*i*)

(*s A scope is a set of notations; it includes

  - a set of ML interpreters/parsers for positive (e.g. 0, 1, 15, ...) and
    negative numbers (e.g. -0, -2, -13, ...). These interpreters may
    fail if a number has no interpretation in the scope (e.g. there is
    no interpretation for negative numbers in [nat]); interpreters both for
    terms and patterns can be set; these interpreters are in permanent table
    [numeral_interpreter_tab]
  - a set of ML printers for expressions denoting numbers parsable in
    this scope
  - a set of interpretations for infix (more generally distfix) notations
  - an optional pair of delimiters which, when occurring in a syntactic
    expression, set this scope to be the current scope
*)

let notation_entry_eq s1 s2 = match (s1,s2) with
| InConstrEntry, InConstrEntry -> true
| InCustomEntry s1, InCustomEntry s2 -> String.equal s1 s2
| (InConstrEntry | InCustomEntry _), _ -> false

let notation_entry_level_eq s1 s2 = match (s1,s2) with
| InConstrEntrySomeLevel, InConstrEntrySomeLevel -> true
| InCustomEntryLevel (s1,n1), InCustomEntryLevel (s2,n2) -> String.equal s1 s2 && n1 = n2
| (InConstrEntrySomeLevel | InCustomEntryLevel _), _ -> false

let notation_eq (from1,ntn1) (from2,ntn2) =
  notation_entry_level_eq from1 from2 && String.equal ntn1 ntn2

let pr_notation (from,ntn) = qstring ntn ++ match from with InConstrEntrySomeLevel -> mt () | InCustomEntryLevel (s,n) -> str " in custom " ++ str s

module NotationOrd =
  struct
    type t = notation
    let compare = Pervasives.compare
  end

module NotationSet = Set.Make(NotationOrd)
module NotationMap = CMap.Make(NotationOrd)

(**********************************************************************)
(* Scope of symbols *)

type delimiters = string
type notation_location = (DirPath.t * DirPath.t) * string

type notation_data = {
  not_interp : interpretation;
  not_location : notation_location;
}

type scope = {
  notations: notation_data NotationMap.t;
  delimiters: delimiters option
}

(* Scopes table: scope_name -> symbol_interpretation *)
let scope_map = ref String.Map.empty

(* Delimiter table : delimiter -> scope_name *)
let delimiters_map = ref String.Map.empty

let empty_scope = {
  notations = NotationMap.empty;
  delimiters = None
}

let default_scope = "" (* empty name, not available from outside *)

let init_scope_map () =
  scope_map := String.Map.add default_scope empty_scope !scope_map

(**********************************************************************)
(* Operations on scopes *)

let declare_scope scope =
  try let _ = String.Map.find scope !scope_map in ()
  with Not_found ->
(*    Flags.if_warn message ("Creating scope "^scope);*)
    scope_map := String.Map.add scope empty_scope !scope_map

let error_unknown_scope sc =
  user_err ~hdr:"Notation"
    (str "Scope " ++ str sc ++ str " is not declared.")

let find_scope scope =
  try String.Map.find scope !scope_map
  with Not_found -> error_unknown_scope scope

let check_scope sc = let _ = find_scope sc in ()

(* [sc] might be here a [scope_name] or a [delimiter]
   (now allowed after Open Scope) *)

let normalize_scope sc =
  try let _ = String.Map.find sc !scope_map in sc
  with Not_found ->
    try
      let sc = String.Map.find sc !delimiters_map in
      let _ = String.Map.find sc !scope_map in sc
    with Not_found -> error_unknown_scope sc

(**********************************************************************)
(* The global stack of scopes                                         *)

type scope_elem = Scope of scope_name | SingleNotation of notation
type scopes = scope_elem list

let scope_eq s1 s2 = match s1, s2 with
| Scope s1, Scope s2 -> String.equal s1 s2
| SingleNotation s1, SingleNotation s2 -> notation_eq s1 s2
| Scope _, SingleNotation _
| SingleNotation _, Scope _ -> false

let scope_stack = ref []

let current_scopes () = !scope_stack

let scope_is_open_in_scopes sc l =
  List.exists (function Scope sc' -> String.equal sc sc' | _ -> false) l

let scope_is_open sc = scope_is_open_in_scopes sc (!scope_stack)

(* TODO: push nat_scope, z_scope, ... in scopes summary *)

(* Exportation of scopes *)
let open_scope i (_,(local,op,sc)) =
  if Int.equal i 1 then
    scope_stack :=
      if op then sc :: !scope_stack
      else List.except scope_eq sc !scope_stack

let cache_scope o =
  open_scope 1 o

let subst_scope (subst,sc) = sc

open Libobject

let discharge_scope (_,(local,_,_ as o)) =
  if local then None else Some o

let classify_scope (local,_,_ as o) =
  if local then Dispose else Substitute o

let inScope : bool * bool * scope_elem -> obj =
  declare_object {(default_object "SCOPE") with
      cache_function = cache_scope;
      open_function = open_scope;
      subst_function = subst_scope;
      discharge_function = discharge_scope;
      classify_function = classify_scope }

let open_close_scope (local,opening,sc) =
  Lib.add_anonymous_leaf (inScope (local,opening,Scope (normalize_scope sc)))

let empty_scope_stack = []

let push_scope sc scopes = Scope sc :: scopes

let push_scopes = List.fold_right push_scope

let make_current_scopes (tmp_scope,scopes) =
  Option.fold_right push_scope tmp_scope (push_scopes scopes !scope_stack)

(**********************************************************************)
(* Delimiters *)

let declare_delimiters scope key =
  let sc = find_scope scope in
  let newsc = { sc with delimiters = Some key } in
  begin match sc.delimiters with
    | None -> scope_map := String.Map.add scope newsc !scope_map
    | Some oldkey when String.equal oldkey key -> ()
    | Some oldkey ->
        (** FIXME: implement multikey scopes? *)
	Flags.if_verbose Feedback.msg_info
	  (str "Overwriting previous delimiting key " ++ str oldkey ++ str " in scope " ++ str scope);
	scope_map := String.Map.add scope newsc !scope_map
  end;
  try
    let oldscope = String.Map.find key !delimiters_map in
    if String.equal oldscope scope then ()
    else begin
      Flags.if_verbose Feedback.msg_info (str "Hiding binding of key " ++ str key ++ str " to " ++ str oldscope);
      delimiters_map := String.Map.add key scope !delimiters_map
    end
  with Not_found -> delimiters_map := String.Map.add key scope !delimiters_map

let remove_delimiters scope =
  let sc = find_scope scope in
  let newsc = { sc with delimiters = None } in
  match sc.delimiters with
    | None -> CErrors.user_err  (str "No bound key for scope " ++ str scope ++ str ".")
    | Some key ->
       scope_map := String.Map.add scope newsc !scope_map;
       try
         let _ = ignore (String.Map.find key !delimiters_map) in
         delimiters_map := String.Map.remove key !delimiters_map
       with Not_found ->
         assert false (* A delimiter for scope [scope] should exist *)

let find_delimiters_scope ?loc key =
  try String.Map.find key !delimiters_map
  with Not_found ->
    user_err ?loc ~hdr:"find_delimiters"
      (str "Unknown scope delimiting key " ++ str key ++ str ".")

(* Uninterpretation tables *)

type interp_rule =
  | NotationRule of scope_name option * notation
  | SynDefRule of KerName.t

(* We define keys for glob_constr and aconstr to split the syntax entries
   according to the key of the pattern (adapted from Chet Murthy by HH) *)

type key =
  | RefKey of GlobRef.t
  | Oth

let key_compare k1 k2 = match k1, k2 with
| RefKey gr1, RefKey gr2 -> RefOrdered.compare gr1 gr2
| RefKey _, Oth -> -1
| Oth, RefKey _ -> 1
| Oth, Oth -> 0

module KeyOrd = struct type t = key let compare = key_compare end
module KeyMap = Map.Make(KeyOrd)

type notation_rule = interp_rule * interpretation * int option

let keymap_add key interp map =
  let old = try KeyMap.find key map with Not_found -> [] in
  KeyMap.add key (interp :: old) map

let keymap_find key map =
  try KeyMap.find key map
  with Not_found -> []

(* Scopes table : interpretation -> scope_name *)
let notations_key_table = ref (KeyMap.empty : notation_rule list KeyMap.t)

let glob_prim_constr_key c = match DAst.get c with
  | GRef (ref, _) -> Some (canonical_gr ref)
  | GApp (c, _) ->
    begin match DAst.get c with
    | GRef (ref, _) -> Some (canonical_gr ref)
    | _ -> None
    end
  | _ -> None

let glob_constr_keys c = match DAst.get c with
  | GApp (c, _) ->
    begin match DAst.get c with
    | GRef (ref, _) -> [RefKey (canonical_gr ref); Oth]
    | _ -> [Oth]
    end
  | GRef (ref,_) -> [RefKey (canonical_gr ref)]
  | _ -> [Oth]

let cases_pattern_key c = match DAst.get c with
  | PatCstr (ref,_,_) -> RefKey (canonical_gr (ConstructRef ref))
  | _ -> Oth

let notation_constr_key = function (* Rem: NApp(NRef ref,[]) stands for @ref *)
  | NApp (NRef ref,args) -> RefKey(canonical_gr ref), Some (List.length args)
  | NList (_,_,NApp (NRef ref,args),_,_)
  | NBinderList (_,_,NApp (NRef ref,args),_,_) ->
      RefKey (canonical_gr ref), Some (List.length args)
  | NRef ref -> RefKey(canonical_gr ref), None
  | NApp (_,args) -> Oth, Some (List.length args)
  | _ -> Oth, None

(**********************************************************************)
(* Interpreting numbers (not in summary because functional objects)   *)

type required_module = full_path * string list
type rawnum = Constrexpr.raw_natural_number * Constrexpr.sign

type prim_token_uid = string

type 'a prim_token_interpreter = ?loc:Loc.t -> 'a -> glob_constr
type 'a prim_token_uninterpreter = any_glob_constr -> 'a option

type 'a prim_token_interpretation =
  'a prim_token_interpreter * 'a prim_token_uninterpreter

module InnerPrimToken = struct

  type interpreter =
    | RawNumInterp of (?loc:Loc.t -> rawnum -> glob_constr)
    | BigNumInterp of (?loc:Loc.t -> Bigint.bigint -> glob_constr)
    | StringInterp of (?loc:Loc.t -> string -> glob_constr)

  let interp_eq f f' = match f,f' with
    | RawNumInterp f, RawNumInterp f' -> f == f'
    | BigNumInterp f, BigNumInterp f' -> f == f'
    | StringInterp f, StringInterp f' -> f == f'
    | _ -> false

  let ofNumeral n s =
    if s then Bigint.of_string n else Bigint.neg (Bigint.of_string n)

  let do_interp ?loc interp primtok =
    match primtok, interp with
    | Numeral (n,s), RawNumInterp interp -> interp ?loc (n,s)
    | Numeral (n,s), BigNumInterp interp -> interp ?loc (ofNumeral n s)
    | String s, StringInterp interp -> interp ?loc s
    | _ -> raise Not_found

  type uninterpreter =
    | RawNumUninterp of (any_glob_constr -> rawnum option)
    | BigNumUninterp of (any_glob_constr -> Bigint.bigint option)
    | StringUninterp of (any_glob_constr -> string option)

  let uninterp_eq f f' = match f,f' with
    | RawNumUninterp f, RawNumUninterp f' -> f == f'
    | BigNumUninterp f, BigNumUninterp f' -> f == f'
    | StringUninterp f, StringUninterp f' -> f == f'
    | _ -> false

  let mkNumeral n =
    if Bigint.is_pos_or_zero n then Numeral (Bigint.to_string n, true)
    else Numeral (Bigint.to_string (Bigint.neg n), false)

  let mkString = function
    | None -> None
    | Some s -> if Unicode.is_utf8 s then Some (String s) else None

  let do_uninterp uninterp g = match uninterp with
    | RawNumUninterp u -> Option.map (fun (n,s) -> Numeral (n,s)) (u g)
    | BigNumUninterp u -> Option.map mkNumeral (u g)
    | StringUninterp u -> mkString (u g)

end

(* The following two tables of (un)interpreters will *not* be
   synchronized.  But their indexes will be checked to be unique.
   These tables contain primitive token interpreters which are
   registered in plugins, such as string and ascii syntax.  It is
   essential that only plugins add to these tables, and that
   vernacular commands do not.  See
   https://github.com/coq/coq/issues/8401 for details of what goes
   wrong when vernacular commands add to these tables. *)
let prim_token_interpreters =
  (Hashtbl.create 7 : (prim_token_uid, InnerPrimToken.interpreter) Hashtbl.t)

let prim_token_uninterpreters =
  (Hashtbl.create 7 : (prim_token_uid, InnerPrimToken.uninterpreter) Hashtbl.t)

(*******************************************************)
(* Numeral notation interpretation                     *)
type numeral_notation_error =
  | UnexpectedTerm of Constr.t
  | UnexpectedNonOptionTerm of Constr.t

exception NumeralNotationError of Environ.env * Evd.evar_map * numeral_notation_error

type numnot_option =
  | Nop
  | Warning of raw_natural_number
  | Abstract of raw_natural_number

type int_ty =
  { uint : Names.inductive;
    int : Names.inductive }

type z_pos_ty =
  { z_ty : Names.inductive;
    pos_ty : Names.inductive }

type target_kind =
  | Int of int_ty (* Coq.Init.Decimal.int + uint *)
  | UInt of Names.inductive (* Coq.Init.Decimal.uint *)
  | Z of z_pos_ty (* Coq.Numbers.BinNums.Z and positive *)

type option_kind = Option | Direct
type conversion_kind = target_kind * option_kind

type numeral_notation_obj =
  { to_kind : conversion_kind;
    to_ty : GlobRef.t;
    of_kind : conversion_kind;
    of_ty : GlobRef.t;
    num_ty : Libnames.qualid; (* for warnings / error messages *)
    warning : numnot_option }

module Numeral = struct
(** * Numeral notation *)

(** Reduction

    The constr [c] below isn't necessarily well-typed, since we
    built it via an [mkApp] of a conversion function on a term
    that starts with the right constructor but might be partially
    applied.

    At least [c] is known to be evar-free, since it comes from
    our own ad-hoc [constr_of_glob] or from conversions such
    as [coqint_of_rawnum].
*)

let eval_constr env sigma (c : Constr.t) =
  let c = EConstr.of_constr c in
  let sigma,t = Typing.type_of env sigma c in
  let c' = Vnorm.cbv_vm env sigma c t in
  EConstr.Unsafe.to_constr c'

(* For testing with "compute" instead of "vm_compute" :
let eval_constr env sigma (c : Constr.t) =
  let c = EConstr.of_constr c in
  let c' = Tacred.compute env sigma c in
  EConstr.Unsafe.to_constr c'
*)

let eval_constr_app env sigma c1 c2 =
  eval_constr env sigma (mkApp (c1,[| c2 |]))

exception NotANumber

let warn_large_num =
  CWarnings.create ~name:"large-number" ~category:"numbers"
    (fun ty ->
      strbrk "Stack overflow or segmentation fault happens when " ++
      strbrk "working with large numbers in " ++ pr_qualid ty ++
      strbrk " (threshold may vary depending" ++
      strbrk " on your system limits and on the command executed).")

let warn_abstract_large_num =
  CWarnings.create ~name:"abstract-large-number" ~category:"numbers"
    (fun (ty,f) ->
      strbrk "To avoid stack overflow, large numbers in " ++
      pr_qualid ty ++ strbrk " are interpreted as applications of " ++
      Nametab.pr_global_env (Termops.vars_of_env (Global.env ())) f ++ strbrk ".")

(** Comparing two raw numbers (base 10, big-endian, non-negative).
    A bit nasty, but not critical: only used to decide when a
    number is considered as large (see warnings above). *)

exception Comp of int

let rec rawnum_compare s s' =
 let l = String.length s and l' = String.length s' in
 if l < l' then - rawnum_compare s' s
 else
   let d = l-l' in
   try
     for i = 0 to d-1 do if s.[i] != '0' then raise (Comp 1) done;
     for i = d to l-1 do
       let c = Pervasives.compare s.[i] s'.[i-d] in
       if c != 0 then raise (Comp c)
     done;
     0
   with Comp c -> c

(***********************************************************************)

(** ** Conversion between Coq [Decimal.int] and internal raw string *)

(** Decimal.Nil has index 1, then Decimal.D0 has index 2 .. Decimal.D9 is 11 *)

let digit_of_char c =
  assert ('0' <= c && c <= '9');
  Char.code c - Char.code '0' + 2

let char_of_digit n =
  assert (2<=n && n<=11);
  Char.chr (n-2 + Char.code '0')

let coquint_of_rawnum uint str =
  let nil = mkConstruct (uint,1) in
  let rec do_chars s i acc =
    if i < 0 then acc
    else
      let dg = mkConstruct (uint, digit_of_char s.[i]) in
      do_chars s (i-1) (mkApp(dg,[|acc|]))
  in
  do_chars str (String.length str - 1) nil

let coqint_of_rawnum inds (str,sign) =
  let uint = coquint_of_rawnum inds.uint str in
  mkApp (mkConstruct (inds.int, if sign then 1 else 2), [|uint|])

let rawnum_of_coquint c =
  let rec of_uint_loop c buf =
    match Constr.kind c with
    | Construct ((_,1), _) (* Nil *) -> ()
    | App (c, [|a|]) ->
       (match Constr.kind c with
        | Construct ((_,n), _) (* D0 to D9 *) ->
           let () = Buffer.add_char buf (char_of_digit n) in
           of_uint_loop a buf
        | _ -> raise NotANumber)
    | _ -> raise NotANumber
  in
  let buf = Buffer.create 64 in
  let () = of_uint_loop c buf in
  if Int.equal (Buffer.length buf) 0 then
    (* To avoid ambiguities between Nil and (D0 Nil), we choose
       to not display Nil alone as "0" *)
    raise NotANumber
  else Buffer.contents buf

let rawnum_of_coqint c =
  match Constr.kind c with
  | App (c,[|c'|]) ->
     (match Constr.kind c with
      | Construct ((_,1), _) (* Pos *) -> (rawnum_of_coquint c', true)
      | Construct ((_,2), _) (* Neg *) -> (rawnum_of_coquint c', false)
      | _ -> raise NotANumber)
  | _ -> raise NotANumber


(***********************************************************************)

(** ** Conversion between Coq [Z] and internal bigint *)

(** First, [positive] from/to bigint *)

let rec pos_of_bigint posty n =
  match Bigint.div2_with_rest n with
  | (q, false) ->
      let c = mkConstruct (posty, 2) in (* xO *)
      mkApp (c, [| pos_of_bigint posty q |])
  | (q, true) when not (Bigint.equal q Bigint.zero) ->
      let c = mkConstruct (posty, 1) in (* xI *)
      mkApp (c, [| pos_of_bigint posty q |])
  | (q, true) ->
      mkConstruct (posty, 3) (* xH *)

let rec bigint_of_pos c = match Constr.kind c with
  | Construct ((_, 3), _) -> (* xH *) Bigint.one
  | App (c, [| d |]) ->
      begin match Constr.kind c with
      | Construct ((_, n), _) ->
          begin match n with
          | 1 -> (* xI *) Bigint.add_1 (Bigint.mult_2 (bigint_of_pos d))
          | 2 -> (* xO *) Bigint.mult_2 (bigint_of_pos d)
          | n -> assert false (* no other constructor of type positive *)
          end
      | x -> raise NotANumber
      end
  | x -> raise NotANumber

(** Now, [Z] from/to bigint *)

let z_of_bigint { z_ty; pos_ty } n =
  if Bigint.equal n Bigint.zero then
    mkConstruct (z_ty, 1) (* Z0 *)
  else
    let (s, n) =
      if Bigint.is_pos_or_zero n then (2, n) (* Zpos *)
      else (3, Bigint.neg n) (* Zneg *)
    in
    let c = mkConstruct (z_ty, s) in
    mkApp (c, [| pos_of_bigint pos_ty n |])

let bigint_of_z z = match Constr.kind z with
  | Construct ((_, 1), _) -> (* Z0 *) Bigint.zero
  | App (c, [| d |]) ->
      begin match Constr.kind c with
      | Construct ((_, n), _) ->
          begin match n with
          | 2 -> (* Zpos *) bigint_of_pos d
          | 3 -> (* Zneg *) Bigint.neg (bigint_of_pos d)
          | n -> assert false (* no other constructor of type Z *)
          end
      | _ -> raise NotANumber
      end
  | _ -> raise NotANumber

(** The uninterp function below work at the level of [glob_constr]
    which is too low for us here. So here's a crude conversion back
    to [constr] for the subset that concerns us. *)

let rec constr_of_glob env sigma g = match DAst.get g with
  | Glob_term.GRef (ConstructRef c, _) ->
      let sigma,c = Evd.fresh_constructor_instance env sigma c in
      sigma,mkConstructU c
  | Glob_term.GApp (gc, gcl) ->
      let sigma,c = constr_of_glob env sigma gc in
      let sigma,cl = List.fold_left_map (constr_of_glob env) sigma gcl in
      sigma,mkApp (c, Array.of_list cl)
  | _ ->
      raise NotANumber

let rec glob_of_constr ?loc env sigma c = match Constr.kind c with
  | App (c, ca) ->
      let c = glob_of_constr ?loc env sigma c in
      let cel = List.map (glob_of_constr ?loc env sigma) (Array.to_list ca) in
      DAst.make ?loc (Glob_term.GApp (c, cel))
  | Construct (c, _) -> DAst.make ?loc (Glob_term.GRef (ConstructRef c, None))
  | Const (c, _) -> DAst.make ?loc (Glob_term.GRef (ConstRef c, None))
  | Ind (ind, _) -> DAst.make ?loc (Glob_term.GRef (IndRef ind, None))
  | Var id -> DAst.make ?loc (Glob_term.GRef (VarRef id, None))
  | _ -> Loc.raise ?loc (NumeralNotationError(env,sigma,UnexpectedTerm c))

let no_such_number ?loc ty =
  CErrors.user_err ?loc
   (str "Cannot interpret this number as a value of type " ++
    pr_qualid ty)

let interp_option ty ?loc env sigma c =
  match Constr.kind c with
  | App (_Some, [| _; c |]) -> glob_of_constr ?loc env sigma c
  | App (_None, [| _ |]) -> no_such_number ?loc ty
  | x -> Loc.raise ?loc (NumeralNotationError(env,sigma,UnexpectedNonOptionTerm c))

let uninterp_option c =
  match Constr.kind c with
  | App (_Some, [| _; x |]) -> x
  | _ -> raise NotANumber

let big2raw n =
  if Bigint.is_pos_or_zero n then (Bigint.to_string n, true)
  else (Bigint.to_string (Bigint.neg n), false)

let raw2big (n,s) =
  if s then Bigint.of_string n else Bigint.neg (Bigint.of_string n)

let interp o ?loc n =
  begin match o.warning with
  | Warning threshold when snd n && rawnum_compare (fst n) threshold >= 0 ->
     warn_large_num o.num_ty
  | _ -> ()
  end;
  let c = match fst o.to_kind with
    | Int int_ty -> coqint_of_rawnum int_ty n
    | UInt uint_ty when snd n -> coquint_of_rawnum uint_ty (fst n)
    | UInt _ (* n <= 0 *) -> no_such_number ?loc o.num_ty
    | Z z_pos_ty -> z_of_bigint z_pos_ty (raw2big n)
  in
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let sigma,to_ty = Evd.fresh_global env sigma o.to_ty in
  let to_ty = EConstr.Unsafe.to_constr to_ty in
  match o.warning, snd o.to_kind with
  | Abstract threshold, Direct when rawnum_compare (fst n) threshold >= 0 ->
     warn_abstract_large_num (o.num_ty,o.to_ty);
     glob_of_constr ?loc env sigma (mkApp (to_ty,[|c|]))
  | _ ->
     let res = eval_constr_app env sigma to_ty c in
     match snd o.to_kind with
     | Direct -> glob_of_constr ?loc env sigma res
     | Option -> interp_option o.num_ty ?loc env sigma res

let uninterp o (Glob_term.AnyGlobConstr n) =
  let env = Global.env () in
  let sigma = Evd.from_env env in
  let sigma,of_ty = Evd.fresh_global env sigma o.of_ty in
  let of_ty = EConstr.Unsafe.to_constr of_ty in
  try
    let sigma,n = constr_of_glob env sigma n in
    let c = eval_constr_app env sigma of_ty n in
    let c = if snd o.of_kind == Direct then c else uninterp_option c in
    match fst o.of_kind with
    | Int _ -> Some (rawnum_of_coqint c)
    | UInt _ -> Some (rawnum_of_coquint c, true)
    | Z _ -> Some (big2raw (bigint_of_z c))
  with
  | Type_errors.TypeError _ | Pretype_errors.PretypeError _ -> None (* cf. eval_constr_app *)
  | NotANumber -> None (* all other functions except big2raw *)
end

(* A [prim_token_infos], which is synchronized with the document
   state, either contains a unique id pointing to an unsynchronized
   prim token function, or a numeral notation object describing how to
   interpret and uninterpret.  We provide [prim_token_infos] because
   we expect plugins to provide their own interpretation functions,
   rather than going through numeral notations, which are available as
   a vernacular. *)

type prim_token_interp_info =
    Uid of prim_token_uid
  | NumeralNotation of numeral_notation_obj

type prim_token_infos = {
  pt_local : bool; (** Is this interpretation local? *)
  pt_scope : scope_name; (** Concerned scope *)
  pt_interp_info : prim_token_interp_info; (** Unique id "pointing" to (un)interp functions, OR a numeral notation object describing (un)interp functions *)
  pt_required : required_module; (** Module that should be loaded first *)
  pt_refs : GlobRef.t list; (** Entry points during uninterpretation *)
  pt_in_match : bool (** Is this prim token legal in match patterns ? *)
}

(* Table from scope_name to backtrack-able informations about interpreters
   (in particular interpreter unique id). *)
let prim_token_interp_infos =
  ref (String.Map.empty : (required_module * prim_token_interp_info) String.Map.t)

(* Table from global_reference to backtrack-able informations about
   prim_token uninterpretation (in particular uninterpreter unique id). *)
let prim_token_uninterp_infos =
  ref (Refmap.empty : (scope_name * prim_token_interp_info * bool) Refmap.t)

let hashtbl_check_and_set allow_overwrite uid f h eq =
  match Hashtbl.find h uid with
   | exception Not_found -> Hashtbl.add h uid f
   | _ when allow_overwrite -> Hashtbl.add h uid f
   | g when eq f g -> ()
   | _ ->
      user_err ~hdr:"prim_token_interpreter"
       (str "Unique identifier " ++ str uid ++
        str " already used to register a numeral or string (un)interpreter.")

let register_gen_interpretation allow_overwrite uid (interp, uninterp) =
  hashtbl_check_and_set
    allow_overwrite uid interp prim_token_interpreters InnerPrimToken.interp_eq;
  hashtbl_check_and_set
    allow_overwrite uid uninterp prim_token_uninterpreters InnerPrimToken.uninterp_eq

let register_rawnumeral_interpretation ?(allow_overwrite=false) uid (interp, uninterp) =
  register_gen_interpretation allow_overwrite uid
    (InnerPrimToken.RawNumInterp interp, InnerPrimToken.RawNumUninterp uninterp)

let register_bignumeral_interpretation ?(allow_overwrite=false) uid (interp, uninterp) =
  register_gen_interpretation allow_overwrite uid
    (InnerPrimToken.BigNumInterp interp, InnerPrimToken.BigNumUninterp uninterp)

let register_string_interpretation ?(allow_overwrite=false) uid (interp, uninterp) =
  register_gen_interpretation allow_overwrite uid
    (InnerPrimToken.StringInterp interp, InnerPrimToken.StringUninterp uninterp)

let cache_prim_token_interpretation (_,infos) =
  let ptii = infos.pt_interp_info in
  let sc = infos.pt_scope in
  declare_scope sc;
  prim_token_interp_infos :=
    String.Map.add sc (infos.pt_required,ptii) !prim_token_interp_infos;
  List.iter (fun r -> prim_token_uninterp_infos :=
                        Refmap.add r (sc,ptii,infos.pt_in_match)
                          !prim_token_uninterp_infos)
            infos.pt_refs

let subst_prim_token_interpretation (subs,infos) =
  { infos with
    pt_refs = List.map (subst_global_reference subs) infos.pt_refs }

let classify_prim_token_interpretation infos =
    if infos.pt_local then Dispose else Substitute infos

let inPrimTokenInterp : prim_token_infos -> obj =
  declare_object {(default_object "PRIM-TOKEN-INTERP") with
     open_function  = (fun i o -> if Int.equal i 1 then cache_prim_token_interpretation o);
     cache_function = cache_prim_token_interpretation;
     subst_function = subst_prim_token_interpretation;
     classify_function = classify_prim_token_interpretation}

let enable_prim_token_interpretation infos =
  Lib.add_anonymous_leaf (inPrimTokenInterp infos)

(** Compatibility.
    Avoid the next two functions, they will now store unnecessary
    objects in the library segment. Instead, combine
    [register_*_interpretation] and [enable_prim_token_interpretation]
    (the latter inside a [Mltop.declare_cache_obj]).
*)

let fresh_string_of =
  let count = ref 0 in
  fun root -> count := !count+1; (string_of_int !count)^"_"^root

let declare_numeral_interpreter ?(local=false) sc dir interp (patl,uninterp,b) =
  let uid = fresh_string_of sc in
  register_bignumeral_interpretation uid (interp,uninterp);
  enable_prim_token_interpretation
    { pt_local = local;
      pt_scope = sc;
      pt_interp_info = Uid uid;
      pt_required = dir;
      pt_refs = List.map_filter glob_prim_constr_key patl;
      pt_in_match = b }
let declare_string_interpreter ?(local=false) sc dir interp (patl,uninterp,b) =
  let uid = fresh_string_of sc in
  register_string_interpretation uid (interp,uninterp);
  enable_prim_token_interpretation
    { pt_local = local;
      pt_scope = sc;
      pt_interp_info = Uid uid;
      pt_required = dir;
      pt_refs = List.map_filter glob_prim_constr_key patl;
      pt_in_match = b }


let check_required_module ?loc sc (sp,d) =
  try let _ = Nametab.global_of_path sp in ()
  with Not_found ->
    match d with
    | [] -> user_err ?loc ~hdr:"prim_token_interpreter"
       (str "Cannot interpret in " ++ str sc ++ str " because " ++ pr_path sp ++ str " could not be found in the current environment.")
    | _ -> user_err ?loc ~hdr:"prim_token_interpreter"
       (str "Cannot interpret in " ++ str sc ++ str " without requiring first module " ++ str (List.last d) ++ str ".")

(* Look if some notation or numeral printer in [scope] can be used in
   the scope stack [scopes], and if yes, using delimiters or not *)

let find_with_delimiters = function
  | None -> None
  | Some scope ->
      match (String.Map.find scope !scope_map).delimiters with
	| Some key -> Some (Some scope, Some key)
	| None -> None

let rec find_without_delimiters find (ntn_scope,ntn) = function
  | Scope scope :: scopes ->
      (* Is the expected ntn/numpr attached to the most recently open scope? *)
      begin match ntn_scope with
      | Some scope' when String.equal scope scope' ->
	Some (None,None)
      | _ ->
	(* If the most recently open scope has a notation/numeral printer
    	   but not the expected one then we need delimiters *)
	if find scope then
	  find_with_delimiters ntn_scope
	else
	  find_without_delimiters find (ntn_scope,ntn) scopes
      end
  | SingleNotation ntn' :: scopes ->
      begin match ntn_scope, ntn with
      | None, Some ntn when notation_eq ntn ntn' ->
	Some (None, None)
      | _ ->
	find_without_delimiters find (ntn_scope,ntn) scopes
      end
  | [] ->
      (* Can we switch to [scope]? Yes if it has defined delimiters *)
      find_with_delimiters ntn_scope

(* The mapping between notations and their interpretation *)

let warn_notation_overridden =
  CWarnings.create ~name:"notation-overridden" ~category:"parsing"
                   (fun (ntn,which_scope) ->
                    str "Notation" ++ spc () ++ pr_notation ntn ++ spc ()
                    ++ strbrk "was already used" ++ which_scope ++ str ".")

let declare_notation_interpretation ntn scopt pat df ~onlyprint =
  let scope = match scopt with Some s -> s | None -> default_scope in
  let sc = find_scope scope in
  if not onlyprint then begin
    let () =
      if NotationMap.mem ntn sc.notations then
      let which_scope = match scopt with
      | None -> mt ()
      | Some _ -> spc () ++ strbrk "in scope" ++ spc () ++ str scope in
      warn_notation_overridden (ntn,which_scope)
    in
    let notdata = {
      not_interp = pat;
      not_location = df;
    } in
    let sc = { sc with notations = NotationMap.add ntn notdata sc.notations } in
    scope_map := String.Map.add scope sc !scope_map
  end;
  begin match scopt with
  | None -> scope_stack := SingleNotation ntn :: !scope_stack
  | Some _ -> ()
  end

let declare_uninterpretation rule (metas,c as pat) =
  let (key,n) = notation_constr_key c in
  notations_key_table := keymap_add key (rule,pat,n) !notations_key_table

let rec find_interpretation ntn find = function
  | [] -> raise Not_found
  | Scope scope :: scopes ->
      (try let (pat,df) = find scope in pat,(df,Some scope)
       with Not_found -> find_interpretation ntn find scopes)
  | SingleNotation ntn'::scopes when notation_eq ntn' ntn ->
      (try let (pat,df) = find default_scope in pat,(df,None)
       with Not_found ->
         (* e.g. because single notation only for constr, not cases_pattern *)
         find_interpretation ntn find scopes)
  | SingleNotation _::scopes ->
      find_interpretation ntn find scopes

let find_notation ntn sc =
  let n = NotationMap.find ntn (find_scope sc).notations in
  (n.not_interp, n.not_location)

let notation_of_prim_token = function
  | Numeral (n,true) -> InConstrEntrySomeLevel, n
  | Numeral (n,false) -> InConstrEntrySomeLevel, "- "^n
  | String _ -> raise Not_found

let find_prim_token check_allowed ?loc p sc =
  (* Try for a user-defined numerical notation *)
  try
    let (_,c),df = find_notation (notation_of_prim_token p) sc in
    let pat = Notation_ops.glob_constr_of_notation_constr ?loc c in
    check_allowed pat;
    pat, df
  with Not_found ->
  (* Try for a primitive numerical notation *)
  let (spdir,info) = String.Map.find sc !prim_token_interp_infos in
  check_required_module ?loc sc spdir;
  let interp = match info with
    | Uid uid -> Hashtbl.find prim_token_interpreters uid
    | NumeralNotation o -> InnerPrimToken.RawNumInterp (Numeral.interp o)
  in
  let pat = InnerPrimToken.do_interp ?loc interp p in
  check_allowed pat;
  pat, ((dirpath (fst spdir),DirPath.empty),"")

let interp_prim_token_gen ?loc g p local_scopes =
  let scopes = make_current_scopes local_scopes in
  let p_as_ntn = try notation_of_prim_token p with Not_found -> InConstrEntrySomeLevel,"" in
  try find_interpretation p_as_ntn (find_prim_token ?loc g p) scopes
  with Not_found ->
    user_err ?loc ~hdr:"interp_prim_token"
    ((match p with
      | Numeral _ ->
         str "No interpretation for numeral " ++ pr_notation (notation_of_prim_token p)
      | String s -> str "No interpretation for string " ++ qs s) ++ str ".")

let interp_prim_token ?loc =
  interp_prim_token_gen ?loc (fun _ -> ())

let rec check_allowed_ref_in_pat looked_for = DAst.(with_val (function
  | GVar _ | GHole _ -> ()
  | GRef (g,_) -> looked_for g
  | GApp (f, l) ->
    begin match DAst.get f with
    | GRef (g, _) ->
      looked_for g; List.iter (check_allowed_ref_in_pat looked_for) l
    | _ -> raise Not_found
    end
  | _ -> raise Not_found))

let interp_prim_token_cases_pattern_expr ?loc looked_for p =
  interp_prim_token_gen ?loc (check_allowed_ref_in_pat looked_for) p

let interp_notation ?loc ntn local_scopes =
  let scopes = make_current_scopes local_scopes in
  try find_interpretation ntn (find_notation ntn) scopes
  with Not_found ->
    user_err ?loc 
    (str "Unknown interpretation for notation " ++ pr_notation ntn ++ str ".")

let uninterp_notations c =
  List.map_append (fun key -> keymap_find key !notations_key_table)
    (glob_constr_keys c)

let uninterp_cases_pattern_notations c =
  keymap_find (cases_pattern_key c) !notations_key_table

let uninterp_ind_pattern_notations ind =
  keymap_find (RefKey (canonical_gr (IndRef ind))) !notations_key_table

let availability_of_notation (ntn_scope,ntn) scopes =
  let f scope =
    NotationMap.mem ntn (String.Map.find scope !scope_map).notations in
  find_without_delimiters f (ntn_scope,Some ntn) (make_current_scopes scopes)

(* We support coercions from a custom entry at some level to an entry
   at some level (possibly the same), and from and to the constr entry. E.g.:

   Notation "[ expr ]" := expr (expr custom group at level 1).
   Notation "( x )" := x (in custom group at level 0, x at level 1).
   Notation "{ x }" := x (in custom group at level 0, x constr).

   Supporting any level is maybe overkill in that coercions are
   commonly from the lowest level of the source entry to the highest
   level of the target entry. *)

type entry_coercion = notation list

module EntryCoercionOrd =
 struct
  type t = notation_entry * notation_entry
   let compare = Pervasives.compare
 end

module EntryCoercionMap = Map.Make(EntryCoercionOrd)

let entry_coercion_map = ref EntryCoercionMap.empty

let level_ord lev lev' =
  match lev, lev' with
  | None, _ -> true
  | _, None -> true
  | Some n, Some n' -> n <= n'

let rec search nfrom nto = function
  | [] -> raise Not_found
  | ((pfrom,pto),coe)::l ->
    if level_ord pfrom nfrom && level_ord nto pto then coe else search nfrom nto l

let decompose_custom_entry = function
  | InConstrEntrySomeLevel -> InConstrEntry, None
  | InCustomEntryLevel (s,n) -> InCustomEntry s, Some n

let availability_of_entry_coercion entry entry' =
  let entry, lev = decompose_custom_entry entry in
  let entry', lev' = decompose_custom_entry entry' in
  if notation_entry_eq entry entry' && level_ord lev' lev then Some []
  else
    try Some (search lev lev' (EntryCoercionMap.find (entry,entry') !entry_coercion_map))
    with Not_found -> None

let better_path ((lev1,lev2),path) ((lev1',lev2'),path') =
  (* better = shorter and lower source and higher target *)
  level_ord lev1 lev1' && level_ord lev2' lev2 && List.length path <= List.length path'

let shorter_path (_,path) (_,path') =
  List.length path <= List.length path'

let rec insert_coercion_path path = function
  | [] -> [path]
  | path'::paths as allpaths ->
      (* If better or equal we keep the more recent one *)
      if better_path path path' then path::paths
      else if better_path path' path then allpaths
      else if shorter_path path path' then path::allpaths
      else path'::insert_coercion_path path paths

let declare_entry_coercion (entry,_ as ntn) entry' =
  let entry, lev = decompose_custom_entry entry in
  let entry', lev' = decompose_custom_entry entry' in
  (* Transitive closure *)
  let toaddleft =
    EntryCoercionMap.fold (fun (entry'',entry''') paths l ->
        List.fold_right (fun ((lev'',lev'''),path) l ->
        if notation_entry_eq entry entry''' && level_ord lev lev''' &&
           not (notation_entry_eq entry' entry'')
        then ((entry'',entry'),((lev'',lev'),path@[ntn]))::l else l) paths l)
      !entry_coercion_map [] in
  let toaddright =
    EntryCoercionMap.fold (fun (entry'',entry''') paths l ->
        List.fold_right (fun ((lev'',lev'''),path) l ->
        if entry' = entry'' && level_ord lev' lev'' && entry <> entry'''
        then ((entry,entry'''),((lev,lev'''),path@[ntn]))::l else l) paths l)
      !entry_coercion_map [] in
  entry_coercion_map :=
    List.fold_right (fun (pair,path) ->
        let olds = try EntryCoercionMap.find pair !entry_coercion_map with Not_found -> [] in
        EntryCoercionMap.add pair (insert_coercion_path path olds))
      (((entry,entry'),((lev,lev'),[ntn]))::toaddright@toaddleft)
      !entry_coercion_map

let entry_has_global_map = ref String.Map.empty

let declare_custom_entry_has_global s n =
  try
    let p = String.Map.find s !entry_has_global_map in
    user_err (str "Custom entry " ++ str s ++
              str " has already a rule for global references at level " ++ int p ++ str ".")
  with Not_found ->
    entry_has_global_map := String.Map.add s n !entry_has_global_map

let entry_has_global = function
  | InConstrEntrySomeLevel -> true
  | InCustomEntryLevel (s,n) ->
     try String.Map.find s !entry_has_global_map <= n with Not_found -> false

let entry_has_ident_map = ref String.Map.empty

let declare_custom_entry_has_ident s n =
  try
    let p = String.Map.find s !entry_has_ident_map in
    user_err (str "Custom entry " ++ str s ++
              str " has already a rule for global references at level " ++ int p ++ str ".")
  with Not_found ->
    entry_has_ident_map := String.Map.add s n !entry_has_ident_map

let entry_has_ident = function
  | InConstrEntrySomeLevel -> true
  | InCustomEntryLevel (s,n) ->
     try String.Map.find s !entry_has_ident_map <= n with Not_found -> false

let uninterp_prim_token c =
  match glob_prim_constr_key c with
  | None -> raise Notation_ops.No_match
  | Some r ->
     try
       let (sc,info,_) = Refmap.find r !prim_token_uninterp_infos in
       let uninterp = match info with
         | Uid uid -> Hashtbl.find prim_token_uninterpreters uid
         | NumeralNotation o -> InnerPrimToken.RawNumUninterp (Numeral.uninterp o)
       in
       match InnerPrimToken.do_uninterp uninterp (AnyGlobConstr c) with
       | None -> raise Notation_ops.No_match
       | Some n -> (sc,n)
     with Not_found -> raise Notation_ops.No_match

let uninterp_prim_token_cases_pattern c =
  match glob_constr_of_closed_cases_pattern c with
  | exception Not_found -> raise Notation_ops.No_match
  | na,c -> let (sc,n) = uninterp_prim_token c in (na,sc,n)

let availability_of_prim_token n printer_scope local_scopes =
  let f scope =
    try
      let uid = snd (String.Map.find scope !prim_token_interp_infos) in
      let open InnerPrimToken in
      match n, uid with
      | Numeral _, NumeralNotation _ -> true
      | _, NumeralNotation _ -> false
      | _, Uid uid ->
        let interp = Hashtbl.find prim_token_interpreters uid in
        match n, interp with
        | Numeral _, (RawNumInterp _ | BigNumInterp _) -> true
        | String _, StringInterp _ -> true
        | _ -> false
    with Not_found -> false
  in
  let scopes = make_current_scopes local_scopes in
  Option.map snd (find_without_delimiters f (Some printer_scope,None) scopes)

(* Miscellaneous *)

let pair_eq f g (x1, y1) (x2, y2) = f x1 x2 && g y1 y2

let notation_binder_source_eq s1 s2 = match s1, s2 with
| NtnParsedAsIdent,  NtnParsedAsIdent -> true
| NtnParsedAsPattern b1, NtnParsedAsPattern b2 -> b1 = b2
| NtnBinderParsedAsConstr bk1, NtnBinderParsedAsConstr bk2 -> bk1 = bk2
| (NtnParsedAsIdent | NtnParsedAsPattern _ | NtnBinderParsedAsConstr _), _ -> false

let ntpe_eq t1 t2 = match t1, t2 with
| NtnTypeConstr, NtnTypeConstr -> true
| NtnTypeBinder s1, NtnTypeBinder s2 -> notation_binder_source_eq s1 s2
| NtnTypeConstrList, NtnTypeConstrList -> true
| NtnTypeBinderList, NtnTypeBinderList -> true
| (NtnTypeConstr | NtnTypeBinder _ | NtnTypeConstrList | NtnTypeBinderList), _ -> false

let var_attributes_eq (_, ((entry1, sc1), tp1)) (_, ((entry2, sc2), tp2)) =
  notation_entry_level_eq entry1 entry2 &&
  pair_eq (Option.equal String.equal) (List.equal String.equal) sc1 sc2 &&
  ntpe_eq tp1 tp2

let interpretation_eq (vars1, t1) (vars2, t2) =
  List.equal var_attributes_eq vars1 vars2 &&
  Notation_ops.eq_notation_constr (List.map fst vars1, List.map fst vars2) t1 t2

let exists_notation_in_scope scopt ntn onlyprint r =
  let scope = match scopt with Some s -> s | None -> default_scope in
  try
    let sc = String.Map.find scope !scope_map in
    let n = NotationMap.find ntn sc.notations in
    interpretation_eq n.not_interp r
  with Not_found -> false

let isNVar_or_NHole = function NVar _ | NHole _ -> true | _ -> false

(**********************************************************************)
(* Mapping classes to scopes *)

open Classops

type scope_class = cl_typ

let scope_class_compare : scope_class -> scope_class -> int =
  cl_typ_ord

let compute_scope_class sigma t =
  let (cl,_,_) = find_class_type sigma t in
  cl

module ScopeClassOrd =
struct
  type t = scope_class
  let compare = scope_class_compare
end

module ScopeClassMap = Map.Make(ScopeClassOrd)

let initial_scope_class_map : scope_name ScopeClassMap.t =
  ScopeClassMap.empty

let scope_class_map = ref initial_scope_class_map

let declare_scope_class sc cl =
  scope_class_map := ScopeClassMap.add cl sc !scope_class_map

let find_scope_class cl =
  ScopeClassMap.find cl !scope_class_map

let find_scope_class_opt = function
  | None -> None
  | Some cl -> try Some (find_scope_class cl) with Not_found -> None

(**********************************************************************)
(* Special scopes associated to arguments of a global reference *)

let rec compute_arguments_classes sigma t =
  match EConstr.kind sigma (Reductionops.whd_betaiotazeta sigma t) with
    | Prod (_,t,u) ->
        let cl = try Some (compute_scope_class sigma t) with Not_found -> None in
        cl :: compute_arguments_classes sigma u
    | _ -> []

let compute_arguments_scope_full sigma t =
  let cls = compute_arguments_classes sigma t in
  let scs = List.map find_scope_class_opt cls in
  scs, cls

let compute_arguments_scope sigma t = fst (compute_arguments_scope_full sigma t)

let compute_type_scope sigma t =
  find_scope_class_opt (try Some (compute_scope_class sigma t) with Not_found -> None)

let current_type_scope_name () =
   find_scope_class_opt (Some CL_SORT)

let scope_class_of_class (x : cl_typ) : scope_class =
  x

(** Updating a scope list, thanks to a list of argument classes
    and the current Bind Scope base. When some current scope
    have been manually given, the corresponding argument class
    is emptied below, so this manual scope will be preserved. *)

let update_scope cl sco =
  match find_scope_class_opt cl with
  | None -> sco
  | sco' -> sco'

let rec update_scopes cls scl = match cls, scl with
  | [], _ -> scl
  | _, [] -> List.map find_scope_class_opt cls
  | cl :: cls, sco :: scl -> update_scope cl sco :: update_scopes cls scl

let arguments_scope = ref Refmap.empty

type arguments_scope_discharge_request =
  | ArgsScopeAuto
  | ArgsScopeManual
  | ArgsScopeNoDischarge

let load_arguments_scope _ (_,(_,r,n,scl,cls)) =
  List.iter (Option.iter check_scope) scl;
  let initial_stamp = ScopeClassMap.empty in
  arguments_scope := Refmap.add r (scl,cls,initial_stamp) !arguments_scope

let cache_arguments_scope o =
  load_arguments_scope 1 o

let subst_scope_class subst cs =
  try Some (subst_cl_typ subst cs) with Not_found -> None

let subst_arguments_scope (subst,(req,r,n,scl,cls)) =
  let r' = fst (subst_global subst r) in
  let subst_cl ocl = match ocl with
    | None -> ocl
    | Some cl ->
        match subst_scope_class subst cl with
        | Some cl'  as ocl' when cl' != cl -> ocl'
        | _ -> ocl in
  let cls' = List.Smart.map subst_cl cls in
  (ArgsScopeNoDischarge,r',n,scl,cls')

let discharge_arguments_scope (_,(req,r,n,l,_)) =
  if req == ArgsScopeNoDischarge || (isVarRef r && Lib.is_in_section r) then None
  else
    let n =
      try
        let vars = Lib.variable_section_segment_of_reference r in
        vars |> List.map fst |> List.filter is_local_assum |> List.length
      with
        Not_found (* Not a ref defined in this section *) -> 0 in
    Some (req,Lib.discharge_global r,n,l,[])

let classify_arguments_scope (req,_,_,_,_ as obj) =
  if req == ArgsScopeNoDischarge then Dispose else Substitute obj

let rebuild_arguments_scope sigma (req,r,n,l,_) =
  match req with
    | ArgsScopeNoDischarge -> assert false
    | ArgsScopeAuto ->
      let env = Global.env () in (*FIXME?*)
      let typ = EConstr.of_constr @@ fst (Global.type_of_global_in_context env r) in
      let scs,cls = compute_arguments_scope_full sigma typ in
      (req,r,List.length scs,scs,cls)
    | ArgsScopeManual ->
      (* Add to the manually given scopes the one found automatically
         for the extra parameters of the section. Discard the classes
         of the manually given scopes to avoid further re-computations. *)
      let env = Global.env () in (*FIXME?*)
      let typ = EConstr.of_constr @@ fst (Global.type_of_global_in_context env r) in
      let l',cls = compute_arguments_scope_full sigma typ in
      let l1 = List.firstn n l' in
      let cls1 = List.firstn n cls in
      (req,r,0,l1@l,cls1)

type arguments_scope_obj =
    arguments_scope_discharge_request * GlobRef.t *
    (* Used to communicate information from discharge to rebuild *)
    (* set to 0 otherwise *) int *
    scope_name option list * scope_class option list

let inArgumentsScope : arguments_scope_obj -> obj =
  declare_object {(default_object "ARGUMENTS-SCOPE") with
      cache_function = cache_arguments_scope;
      load_function = load_arguments_scope;
      subst_function = subst_arguments_scope;
      classify_function = classify_arguments_scope;
      discharge_function = discharge_arguments_scope;
      (* XXX: Should we pass the sigma here or not, see @herbelin's comment in 6511 *)
      rebuild_function = rebuild_arguments_scope Evd.empty }

let is_local local ref = local || isVarRef ref && Lib.is_in_section ref

let declare_arguments_scope_gen req r n (scl,cls) =
  Lib.add_anonymous_leaf (inArgumentsScope (req,r,n,scl,cls))

let declare_arguments_scope local r scl =
  let req = if is_local local r then ArgsScopeNoDischarge else ArgsScopeManual in
  (* We empty the list of argument classes to disable further scope
     re-computations and keep these manually given scopes. *)
  declare_arguments_scope_gen req r 0 (scl,[])

let find_arguments_scope r =
  try
    let (scl,cls,stamp) = Refmap.find r !arguments_scope in
    let cur_stamp = !scope_class_map in
    if stamp == cur_stamp then scl
    else
      (* Recent changes in the Bind Scope base, we re-compute the scopes *)
      let scl' = update_scopes cls scl in
      arguments_scope := Refmap.add r (scl',cls,cur_stamp) !arguments_scope;
      scl'
  with Not_found -> []

let declare_ref_arguments_scope sigma ref =
  let env = Global.env () in (* FIXME? *)
  let typ = EConstr.of_constr @@ fst @@ Global.type_of_global_in_context env ref in
  let (scs,cls as o) = compute_arguments_scope_full sigma typ in
  declare_arguments_scope_gen ArgsScopeAuto ref (List.length scs) o

(********************************)
(* Encoding notations as string *)

type symbol =
  | Terminal of string
  | NonTerminal of Id.t
  | SProdList of Id.t * symbol list
  | Break of int

let rec symbol_eq s1 s2 = match s1, s2 with
| Terminal s1, Terminal s2 -> String.equal s1 s2
| NonTerminal id1, NonTerminal id2 -> Id.equal id1 id2
| SProdList (id1, l1), SProdList (id2, l2) ->
  Id.equal id1 id2 && List.equal symbol_eq l1 l2
| Break i1, Break i2 -> Int.equal i1 i2
| _ -> false

let rec string_of_symbol = function
  | NonTerminal _ -> ["_"]
  | Terminal "_" -> ["'_'"]
  | Terminal s -> [s]
  | SProdList (_,l) ->
     let l = List.flatten (List.map string_of_symbol l) in "_"::l@".."::l@["_"]
  | Break _ -> []

let make_notation_key from symbols =
  (from,String.concat " " (List.flatten (List.map string_of_symbol symbols)))

let decompose_notation_key (from,s) =
  let len = String.length s in
  let rec decomp_ntn dirs n =
    if n>=len then List.rev dirs else
    let pos =
      try
	String.index_from s n ' '
      with Not_found -> len
    in
    let tok =
      match String.sub s n (pos-n) with
      | "_" -> NonTerminal (Id.of_string "_")
      | s -> Terminal (String.drop_simple_quotes s) in
    decomp_ntn (tok::dirs) (pos+1)
  in
    from, decomp_ntn [] 0

(************)
(* Printing *)

let pr_delimiters_info = function
  | None -> str "No delimiting key"
  | Some key -> str "Delimiting key is " ++ str key

let classes_of_scope sc =
  ScopeClassMap.fold (fun cl sc' l -> if String.equal sc sc' then cl::l else l) !scope_class_map []

let pr_scope_class = pr_class

let pr_scope_classes sc =
  let l = classes_of_scope sc in
  match l with
  | [] -> mt ()
  | _ :: ll ->
    let opt_s = match ll with [] -> mt () | _ -> str "es" in
    hov 0 (str "Bound to class" ++ opt_s ++
      spc() ++ prlist_with_sep spc pr_scope_class l) ++ fnl()

let pr_notation_info prglob ntn c =
  str "\"" ++ str ntn ++ str "\" := " ++
  prglob (Notation_ops.glob_constr_of_notation_constr c)

let pr_named_scope prglob scope sc =
 (if String.equal scope default_scope then
   match NotationMap.cardinal sc.notations with
     | 0 -> str "No lonely notation"
     | n -> str "Lonely notation" ++ (if Int.equal n 1 then mt() else str"s")
  else
    str "Scope " ++ str scope ++ fnl () ++ pr_delimiters_info sc.delimiters)
  ++ fnl ()
  ++ pr_scope_classes scope
  ++ NotationMap.fold
       (fun ntn { not_interp  = (_, r); not_location = (_, df) } strm ->
	 pr_notation_info prglob df r ++ fnl () ++ strm)
       sc.notations (mt ())

let pr_scope prglob scope = pr_named_scope prglob scope (find_scope scope)

let pr_scopes prglob =
 String.Map.fold
   (fun scope sc strm -> pr_named_scope prglob scope sc ++ fnl () ++ strm)
   !scope_map (mt ())

let rec find_default ntn = function
  | [] -> None
  | Scope scope :: scopes ->
    if NotationMap.mem ntn (find_scope scope).notations then
      Some scope
    else find_default ntn scopes
  | SingleNotation ntn' :: scopes ->
    if notation_eq ntn ntn' then Some default_scope
    else find_default ntn scopes

let factorize_entries = function
  | [] -> []
  | (ntn,c)::l ->
      let (ntn,l_of_ntn,rest) =
	List.fold_left
          (fun (a',l,rest) (a,c) ->
            if notation_eq a a' then (a',c::l,rest) else (a,[c],(a',l)::rest))
	  (ntn,[c],[]) l in
      (ntn,l_of_ntn)::rest

type symbol_token = WhiteSpace of int | String of string

let split_notation_string str =
  let push_token beg i l =
    if Int.equal beg i then l else
      let s = String.sub str beg (i - beg) in
      String s :: l
  in
  let push_whitespace beg i l =
    if Int.equal beg i then l else WhiteSpace (i-beg) :: l
  in
  let rec loop beg i =
    if i < String.length str then
      if str.[i] == ' ' then
        push_token beg i (loop_on_whitespace (i+1) (i+1))
      else
        loop beg (i+1)
    else
      push_token beg i []
  and loop_on_whitespace beg i =
    if i < String.length str then
      if str.[i] != ' ' then
        push_whitespace beg i (loop i (i+1))
      else
        loop_on_whitespace beg (i+1)
    else
      push_whitespace beg i []
  in
  loop 0 0

let rec raw_analyze_notation_tokens = function
  | []    -> []
  | String ".." :: sl -> NonTerminal Notation_ops.ldots_var :: raw_analyze_notation_tokens sl
  | String "_" :: _ -> user_err Pp.(str "_ must be quoted.")
  | String x :: sl when Id.is_valid x ->
      NonTerminal (Names.Id.of_string x) :: raw_analyze_notation_tokens sl
  | String s :: sl ->
      Terminal (String.drop_simple_quotes s) :: raw_analyze_notation_tokens sl
  | WhiteSpace n :: sl ->
      Break n :: raw_analyze_notation_tokens sl

let decompose_raw_notation ntn = raw_analyze_notation_tokens (split_notation_string ntn)

let possible_notations ntn =
  (* We collect the possible interpretations of a notation string depending on whether it is
    in "x 'U' y" or "_ U _" format *)
  let toks = split_notation_string ntn in
  if List.exists (function String "_" -> true | _ -> false) toks then
    (* Only "_ U _" format *)
    [ntn]
  else
    let _,ntn' = make_notation_key None (raw_analyze_notation_tokens toks) in
    if String.equal ntn ntn' then (* Only symbols *) [ntn] else [ntn;ntn']

let browse_notation strict ntn map =
  let ntns = possible_notations ntn in
  let find (from,ntn' as fullntn') ntn =
    if String.contains ntn ' ' then String.equal ntn ntn'
    else
      let _,toks = decompose_notation_key fullntn' in
      let get_terminals = function Terminal ntn -> Some ntn | _ -> None in
      let trms = List.map_filter get_terminals toks in
      if strict then String.List.equal [ntn] trms
      else String.List.mem ntn trms
  in
  let l =
    String.Map.fold
      (fun scope_name sc ->
        NotationMap.fold (fun ntn { not_interp  = (_, r); not_location = df } l ->
          if List.exists (find ntn) ntns then (ntn,(scope_name,r,df))::l else l) sc.notations)
      map [] in
  List.sort (fun x y -> String.compare (snd (fst x)) (snd (fst y))) l

let global_reference_of_notation test (ntn,(sc,c,_)) =
  match c with
  | NRef ref when test ref -> Some (ntn,sc,ref)
  | NApp (NRef ref, l) when List.for_all isNVar_or_NHole l && test ref ->
      Some (ntn,sc,ref)
  | _ -> None

let error_ambiguous_notation ?loc _ntn =
  user_err ?loc (str "Ambiguous notation.")

let error_notation_not_reference ?loc ntn =
  user_err ?loc 
   (str "Unable to interpret " ++ quote (str ntn) ++
    str " as a reference.")

let interp_notation_as_global_reference ?loc test ntn sc =
  let scopes = match sc with
  | Some sc ->
      let scope = find_scope (find_delimiters_scope sc) in
      String.Map.add sc scope String.Map.empty
  | None -> !scope_map in
  let ntns = browse_notation true ntn scopes in
  let refs = List.map (global_reference_of_notation test) ntns in
  match Option.List.flatten refs with
  | [_,_,ref] -> ref
  | [] -> error_notation_not_reference ?loc ntn
  | refs ->
      let f (ntn,sc,ref) =
        let def = find_default ntn !scope_stack in
        match def with
        | None -> false
        | Some sc' -> String.equal sc sc'
      in
      match List.filter f refs with
      | [_,_,ref] -> ref
      | [] -> error_notation_not_reference ?loc ntn
      | _ -> error_ambiguous_notation ?loc ntn

let locate_notation prglob ntn scope =
  let ntns = factorize_entries (browse_notation false ntn !scope_map) in
  let scopes = Option.fold_right push_scope scope !scope_stack in
  match ntns with
  | [] -> str "Unknown notation"
  | _ ->
    str "Notation" ++ fnl () ++
    prlist_with_sep fnl (fun (ntn,l) ->
      let scope = find_default ntn scopes in
      prlist
	(fun (sc,r,(_,df)) ->
	  hov 0 (
	    pr_notation_info prglob df r ++
	    (if String.equal sc default_scope then mt ()
             else (spc () ++ str ": " ++ str sc)) ++
	    (if Option.equal String.equal (Some sc) scope
             then spc () ++ str "(default interpretation)" else mt ())))
	l) ntns

let collect_notation_in_scope scope sc known =
  assert (not (String.equal scope default_scope));
  NotationMap.fold
    (fun ntn { not_interp  = (_, r); not_location = (_, df) } (l,known as acc) ->
      if List.mem_f notation_eq ntn known then acc else ((df,r)::l,ntn::known))
    sc.notations ([],known)

let collect_notations stack =
  fst (List.fold_left
    (fun (all,knownntn as acc) -> function
      | Scope scope ->
	  if String.List.mem_assoc scope all then acc
	  else
	    let (l,knownntn) =
	      collect_notation_in_scope scope (find_scope scope) knownntn in
	    ((scope,l)::all,knownntn)
      | SingleNotation ntn ->
          if List.mem_f notation_eq ntn knownntn then (all,knownntn)
	  else
	    let { not_interp  = (_, r); not_location = (_, df) } =
              NotationMap.find ntn (find_scope default_scope).notations in
	    let all' = match all with
	      | (s,lonelyntn)::rest when String.equal s default_scope ->
		  (s,(df,r)::lonelyntn)::rest
	      | _ ->
		  (default_scope,[df,r])::all in
	    (all',ntn::knownntn))
    ([],[]) stack)

let pr_visible_in_scope prglob (scope,ntns) =
  let strm =
    List.fold_right
      (fun (df,r) strm -> pr_notation_info prglob df r ++ fnl () ++ strm)
      ntns (mt ()) in
  (if String.equal scope default_scope then
     str "Lonely notation" ++ (match ntns with [_] -> mt () | _ -> str "s")
   else
     str "Visible in scope " ++ str scope)
  ++ fnl () ++ strm

let pr_scope_stack prglob stack =
  List.fold_left
    (fun strm scntns -> strm ++ pr_visible_in_scope prglob scntns ++ fnl ())
    (mt ()) (collect_notations stack)

let pr_visibility prglob = function
  | Some scope -> pr_scope_stack prglob (push_scope scope !scope_stack)
  | None -> pr_scope_stack prglob !scope_stack

(**********************************************************************)
(* Synchronisation with reset *)

let freeze _ =
 (!scope_map, !scope_stack, !arguments_scope,
  !delimiters_map, !notations_key_table, !scope_class_map,
  !prim_token_interp_infos, !prim_token_uninterp_infos,
  !entry_coercion_map, !entry_has_global_map,
  !entry_has_ident_map)

let unfreeze (scm,scs,asc,dlm,fkm,clsc,ptii,ptui,coe,globs,ids) =
  scope_map := scm;
  scope_stack := scs;
  delimiters_map := dlm;
  arguments_scope := asc;
  notations_key_table := fkm;
  scope_class_map := clsc;
  prim_token_interp_infos := ptii;
  prim_token_uninterp_infos := ptui;
  entry_coercion_map := coe;
  entry_has_global_map := globs;
  entry_has_ident_map := ids

let init () =
  init_scope_map ();
  delimiters_map := String.Map.empty;
  notations_key_table := KeyMap.empty;
  scope_class_map := initial_scope_class_map;
  prim_token_interp_infos := String.Map.empty;
  prim_token_uninterp_infos := Refmap.empty

let _ =
  Summary.declare_summary "symbols"
    { Summary.freeze_function = freeze;
      Summary.unfreeze_function = unfreeze;
      Summary.init_function = init }

let with_notation_protection f x =
  let fs = freeze false in
  try let a = f x in unfreeze fs; a
  with reraise ->
    let reraise = CErrors.push reraise in
    let () = unfreeze fs in
    iraise reraise