summaryrefslogtreecommitdiff
path: root/doc/refman/RefMan-ltac.tex
blob: 38ad9aa86bb7cc2a892cbb83223ba5e9d00ce782 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
\chapter[The tactic language]{The tactic language\label{TacticLanguage}}

%\geometry{a4paper,body={5in,8in}}

This chapter gives a compact documentation of Ltac, the tactic
language available in {\Coq}. We start by giving the syntax, and next,
we present the informal semantics. If you want to know more regarding
this language and especially about its foundations, you can refer
to~\cite{Del00}. Chapter~\ref{Tactics-examples} is devoted to giving
examples of use of this language on small but also with non-trivial
problems.


\section{Syntax}

\def\tacexpr{\textrm{\textsl{expr}}}
\def\tacexprlow{\textrm{\textsl{tacexpr$_1$}}}
\def\tacexprinf{\textrm{\textsl{tacexpr$_2$}}}
\def\tacexprpref{\textrm{\textsl{tacexpr$_3$}}}
\def\atom{\textrm{\textsl{atom}}}
%%\def\recclause{\textrm{\textsl{rec\_clause}}}
\def\letclause{\textrm{\textsl{let\_clause}}}
\def\matchrule{\textrm{\textsl{match\_rule}}}
\def\contextrule{\textrm{\textsl{context\_rule}}}
\def\contexthyp{\textrm{\textsl{context\_hyp}}}
\def\tacarg{\nterm{tacarg}}
\def\cpattern{\nterm{cpattern}}

The syntax of the tactic language is given Figures~\ref{ltac}
and~\ref{ltac_aux}. See Chapter~\ref{BNF-syntax} for a description of
the BNF metasyntax used in these grammar rules. Various already
defined entries will be used in this chapter: entries
{\naturalnumber}, {\integer}, {\ident}, {\qualid}, {\term},
{\cpattern} and {\atomictac} represent respectively the natural and
integer numbers, the authorized identificators and qualified names,
{\Coq}'s terms and patterns and all the atomic tactics described in
Chapter~\ref{Tactics}. The syntax of {\cpattern} is the same as that
of terms, but it is extended with pattern matching metavariables. In
{\cpattern}, a pattern-matching metavariable is represented with the
syntax {\tt ?id} where {\tt id} is an {\ident}. The notation {\tt \_}
can also be used to denote metavariable whose instance is
irrelevant. In the notation {\tt ?id}, the identifier allows us to
keep instantiations and to make constraints whereas {\tt \_} shows
that we are not interested in what will be matched. On the right hand
side of pattern-matching clauses, the named metavariable are used
without the question mark prefix. There is also a special notation for
second-order pattern-matching problems: in an applicative pattern of
the form {\tt @?id id$_1$ \ldots id$_n$}, the variable {\tt id}
matches any complex expression with (possible) dependencies in the
variables {\tt id$_1$ \ldots id$_n$} and returns a functional term of
the form {\tt fun id$_1$ \ldots id$_n$ => {\term}}.


The main entry of the grammar is {\tacexpr}. This language is used in
proof mode but it can also be used in toplevel definitions as shown in
Figure~\ref{ltactop}.

\begin{Remarks}
\item The infix tacticals ``\dots\ {\tt ||} \dots'' and ``\dots\ {\tt
    ;} \dots'' are associative. 

\item In {\tacarg}, there is an overlap between {\qualid} as a
direct tactic argument and {\qualid} as a particular case of
{\term}. The resolution is done by first looking for a reference of
the tactic language and if it fails, for a reference to a term. To
force the resolution as a reference of the tactic language, use the
form {\tt ltac :} {\qualid}. To force the resolution as a reference to
a term, use the syntax {\tt ({\qualid})}.

\item As shown by the figure, tactical {\tt ||} binds more than the
prefix tacticals {\tt try}, {\tt repeat}, {\tt do}, {\tt info} and
{\tt abstract} which themselves bind more than the postfix tactical
``{\tt \dots\ ;[ \dots\ ]}'' which binds more than ``\dots\ {\tt ;}
\dots''.

For instance
\begin{quote}
{\tt try repeat \tac$_1$ ||
  \tac$_2$;\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$];\tac$_4$.}
\end{quote}
is understood as 
\begin{quote}
{\tt (try (repeat (\tac$_1$ || \tac$_2$)));} \\
{\tt ((\tac$_3$;[\tac$_{31}$|\dots|\tac$_{3n}$]);\tac$_4$).}
\end{quote}
\end{Remarks}


\begin{figure}[htbp]
\begin{centerframe}
\begin{tabular}{lcl}
{\tacexpr} & ::= &
           {\tacexpr} {\tt ;} {\tacexpr}\\
& | & {\tacexpr} {\tt ; [} \nelist{\tacexpr}{|} {\tt ]}\\
& | & {\tacexprpref}\\
\\
{\tacexprpref} & ::= &
           {\tt do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\
& | & {\tt info} {\tacexprpref}\\
& | & {\tt progress} {\tacexprpref}\\
& | & {\tt repeat} {\tacexprpref}\\
& | & {\tt try} {\tacexprpref}\\
& | & {\tt timeout} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} {\tacexprpref}\\
& | & {\tacexprinf} \\
\\
{\tacexprinf} & ::= &
           {\tacexprlow} {\tt ||} {\tacexprpref}\\
& | & {\tacexprlow}\\
\\
{\tacexprlow} & ::= &
{\tt fun} \nelist{\name}{} {\tt =>} {\atom}\\
& | &
{\tt let} \zeroone{\tt rec} \nelist{\letclause}{\tt with} {\tt in}
{\atom}\\
& | &
{\tt match goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
& | &
{\tt match reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
& | &
{\tt match} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\
& | &
{\tt lazymatch goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
& | &
{\tt lazymatch reverse goal with} \nelist{\contextrule}{\tt |} {\tt end}\\
& | &
{\tt lazymatch} {\tacexpr} {\tt with} \nelist{\matchrule}{\tt |} {\tt end}\\
& | & {\tt abstract} {\atom}\\
& | & {\tt abstract} {\atom} {\tt using} {\ident} \\
& | & {\tt first [} \nelist{\tacexpr}{\tt |} {\tt ]}\\
& | & {\tt solve [} \nelist{\tacexpr}{\tt |} {\tt ]}\\
& | & {\tt idtac} \sequence{\messagetoken}{}\\
& | & {\tt fail} \zeroone{\naturalnumber} \sequence{\messagetoken}{}\\
& | & {\tt fresh} ~|~ {\tt fresh} {\qstring}\\
& | & {\tt context} {\ident} {\tt [} {\term} {\tt ]}\\
& | & {\tt eval} {\nterm{redexpr}} {\tt in} {\term}\\
& | & {\tt type of} {\term}\\
& | & {\tt external} {\qstring} {\qstring} \nelist{\tacarg}{}\\
& | & {\tt constr :} {\term}\\
& | & \atomictac\\
& | & {\qualid} \nelist{\tacarg}{}\\
& | & {\atom}\\
\\
{\atom} & ::= &
           {\qualid} \\
& | & ()\\
& | & {\integer}\\
& | & {\tt (} {\tacexpr} {\tt )}\\
\\
{\messagetoken}\!\!\!\!\!\! & ::= & {\qstring} ~|~ {\ident} ~|~ {\integer} \\
\end{tabular}
\end{centerframe}
\caption{Syntax of the tactic language}
\label{ltac}
\end{figure}



\begin{figure}[htbp]
\begin{centerframe}
\begin{tabular}{lcl}
\tacarg & ::= & 
        {\qualid}\\
& $|$ & {\tt ()} \\
& $|$ & {\tt ltac :} {\atom}\\
& $|$ & {\term}\\
\\
\letclause & ::= & {\ident} \sequence{\name}{} {\tt :=} {\tacexpr}\\
\\
\contextrule & ::= &
  \nelist{\contexthyp}{\tt ,} {\tt |-}{\cpattern} {\tt =>} {\tacexpr}\\
& $|$ & {\tt |-} {\cpattern} {\tt =>} {\tacexpr}\\
& $|$ & {\tt \_ =>} {\tacexpr}\\
\\
\contexthyp & ::= & {\name} {\tt :} {\cpattern}\\
             & $|$ & {\name} {\tt :=} {\cpattern} \zeroone{{\tt :} {\cpattern}}\\
\\
\matchrule & ::= &
           {\cpattern} {\tt =>} {\tacexpr}\\
& $|$ & {\tt context} {\zeroone{\ident}} {\tt [} {\cpattern} {\tt ]}
           {\tt =>} {\tacexpr}\\
& $|$ & {\tt appcontext} {\zeroone{\ident}} {\tt [} {\cpattern} {\tt ]}
           {\tt =>} {\tacexpr}\\
& $|$ & {\tt \_ =>} {\tacexpr}\\
\end{tabular}
\end{centerframe}
\caption{Syntax of the tactic language (continued)}
\label{ltac_aux}
\end{figure}

\begin{figure}[ht]
\begin{centerframe}
\begin{tabular}{lcl}
\nterm{top} & ::= & \zeroone{\tt Local} {\tt Ltac} \nelist{\nterm{ltac\_def}} {\tt with} \\
\\
\nterm{ltac\_def} & ::= & {\ident} \sequence{\ident}{} {\tt :=}
{\tacexpr}\\
& $|$ &{\qualid} \sequence{\ident}{} {\tt ::=}{\tacexpr}
\end{tabular}
\end{centerframe}
\caption{Tactic toplevel definitions}
\label{ltactop}
\end{figure}


%%
%% Semantics
%%
\section{Semantics}
%\index[tactic]{Tacticals}
\index{Tacticals}
%\label{Tacticals}

Tactic expressions can only be applied in the context of a goal.  The
evaluation yields either a term, an integer or a tactic. Intermediary
results can be terms or integers but the final result must be a tactic
which is then applied to the current goal.

There is a special case for {\tt match goal} expressions of which
the clauses evaluate to tactics. Such expressions can only be used as
end result of a tactic expression (never as argument of a non recursive local
definition or of an application).

The rest of this section explains the semantics of every construction
of Ltac.


%% \subsection{Values}

%% Values are given by Figure~\ref{ltacval}. All these values are tactic values,
%% i.e. to be applied to a goal, except {\tt Fun}, {\tt Rec} and $arg$ values.

%% \begin{figure}[ht]
%% \noindent{}\framebox[6in][l]
%% {\parbox{6in}
%% {\begin{center}
%% \begin{tabular}{lp{0.1in}l}
%% $vexpr$ & ::= & $vexpr$ {\tt ;} $vexpr$\\
%% & | & $vexpr$ {\tt ; [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt
%% ]}\\
%% & | & $vatom$\\
%% \\
%% $vatom$ & ::= & {\tt Fun} \nelist{\inputfun}{}  {\tt ->} {\tacexpr}\\
%% %& | & {\tt Rec} \recclause\\
%% & | &
%% {\tt Rec} \nelist{\recclause}{\tt And} {\tt In}
%% {\tacexpr}\\
%% & | &
%% {\tt Match Context With} {\it (}$context\_rule$ {\tt |}{\it )}$^*$
%% $context\_rule$\\
%% & | & {\tt (} $vexpr$ {\tt )}\\
%% & | & $vatom$ {\tt Orelse} $vatom$\\
%% & | & {\tt Do} {\it (}{\naturalnumber} {\it |} {\ident}{\it )} $vatom$\\
%% & | & {\tt Repeat} $vatom$\\
%% & | & {\tt Try} $vatom$\\
%% & | & {\tt First [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\
%% & | & {\tt Solve [} {\it (}$vexpr$ {\tt |}{\it )}$^*$ $vexpr$ {\tt ]}\\
%% & | & {\tt Idtac}\\
%% & | & {\tt Fail}\\
%% & | & {\primitivetactic}\\
%% & | & $arg$
%% \end{tabular}
%% \end{center}}}
%% \caption{Values of ${\cal L}_{tac}$}
%% \label{ltacval}
%% \end{figure}

%% \subsection{Evaluation}

\subsubsection[Sequence]{Sequence\tacindex{;}
\index{Tacticals!;@{\tt {\tac$_1$};\tac$_2$}}}

A sequence is an expression of the following form:
\begin{quote}
{\tacexpr}$_1$ {\tt ;} {\tacexpr}$_2$
\end{quote}
The expressions {\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated
to $v_1$ and $v_2$ which have to be tactic values. The tactic $v_1$ is
then applied and $v_2$ is applied to every subgoal generated by the
application of $v_1$. Sequence is left-associative.

\subsubsection[General sequence]{General sequence\tacindex{;[\ldots$\mid$\ldots$\mid$\ldots]}}
%\tacindex{; [ | ]}
%\index{; [ | ]@{\tt ;[\ldots$\mid$\ldots$\mid$\ldots]}}
\index{Tacticals!; [ \mid ]@{\tt {\tac$_0$};[{\tac$_1$}$\mid$\ldots$\mid$\tac$_n$]}}

A general sequence has the following form:
\begin{quote}
{\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |}
{\tacexpr}$_n$ {\tt ]}
\end{quote}
The expressions {\tacexpr}$_i$ are evaluated to $v_i$, for $i=0,...,n$
and all have to be tactics. The tactic $v_0$ is applied and $v_i$ is
applied to the $i$-th generated subgoal by the application of $v_0$,
for $=1,...,n$. It fails if the application of $v_0$ does not generate
exactly $n$ subgoals.

\begin{Variants}
  \item If no tactic is given for the $i$-th generated subgoal, it
behaves as if the tactic {\tt idtac} were given. For instance, {\tt
split ; [ | auto ]} is a shortcut for
{\tt split ; [ idtac | auto ]}.

  \item {\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |}
    {\tacexpr}$_i$ {\tt |} {\tt ..} {\tt |} {\tacexpr}$_{i+1+j}$ {\tt |}
    $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}

  In this variant, {\tt idtac} is used for the subgoals numbered from
  $i+1$ to $i+j$ (assuming $n$ is the number of subgoals).

  Note that {\tt ..} is part of the syntax, while $...$ is the meta-symbol used
  to describe a list of {\tacexpr} of arbitrary length.

  \item {\tacexpr}$_0$ {\tt ; [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |}
    {\tacexpr}$_i$ {\tt |} {\tacexpr} {\tt ..} {\tt |}
    {\tacexpr}$_{i+1+j}$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}

  In this variant, {\tacexpr} is used instead of {\tt idtac} for the
  subgoals numbered from $i+1$ to $i+j$.

\end{Variants}



\subsubsection[For loop]{For loop\tacindex{do}
\index{Tacticals!do@{\tt do}}}

There is a for loop that repeats a tactic {\num} times:
\begin{quote}
{\tt do} {\num} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
applied {\num} times. Supposing ${\num}>1$, after the first
application of $v$, $v$ is applied, at least once, to the generated
subgoals and so on. It fails if the application of $v$ fails before
the {\num} applications have been completed.

\subsubsection[Repeat loop]{Repeat loop\tacindex{repeat}
\index{Tacticals!repeat@{\tt repeat}}}

We have a repeat loop with:
\begin{quote}
{\tt repeat} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. If $v$ denotes a tactic, this tactic
is applied to the goal. If the application fails, the tactic is
applied recursively to all the generated subgoals until it eventually
fails.  The recursion stops in a subgoal when the tactic has failed.
The tactic {\tt repeat {\tacexpr}} itself never fails.

\subsubsection[Error catching]{Error catching\tacindex{try}
\index{Tacticals!try@{\tt try}}}

We can catch the tactic errors with:
\begin{quote}
{\tt try} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
applied. If the application of $v$ fails, it catches the error and
leaves the goal unchanged. If the level of the exception is positive,
then the exception is re-raised with its level decremented.

\subsubsection[Detecting progress]{Detecting progress\tacindex{progress}}

We can check if a tactic made progress with:
\begin{quote}
{\tt progress} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
applied. If the application of $v$ produced one subgoal equal to the
initial goal (up to syntactical equality), then an error of level 0 is
raised. 

\ErrMsg \errindex{Failed to progress}

\subsubsection[Branching]{Branching\tacindex{$\mid\mid$}
\index{Tacticals!orelse@{\tt $\mid\mid$}}}

We can easily branch with the following structure:
\begin{quote}
{\tacexpr}$_1$ {\tt ||} {\tacexpr}$_2$
\end{quote}
{\tacexpr}$_1$ and {\tacexpr}$_2$ are evaluated to $v_1$ and
$v_2$. $v_1$ and $v_2$ must be tactic values. $v_1$ is applied and if
it fails to progress then $v_2$ is applied. Branching is left-associative.

\subsubsection[First tactic to work]{First tactic to work\tacindex{first}
\index{Tacticals!first@{\tt first}}}

We may consider the first tactic to work (i.e. which does not fail) among a
panel of tactics:
\begin{quote}
{\tt first [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
\end{quote}
{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for 
$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it works, it stops else it
tries to apply $v_2$ and so on. It fails when there is no applicable tactic.

\ErrMsg \errindex{No applicable tactic}

\subsubsection[Solving]{Solving\tacindex{solve}
\index{Tacticals!solve@{\tt solve}}}

We may consider the first to solve (i.e. which generates no subgoal) among a
panel of tactics:
\begin{quote}
{\tt solve [} {\tacexpr}$_1$ {\tt |} $...$ {\tt |} {\tacexpr}$_n$ {\tt ]}
\end{quote}
{\tacexpr}$_i$ are evaluated to $v_i$ and $v_i$ must be tactic values, for 
$i=1,...,n$. Supposing $n>1$, it applies $v_1$, if it solves, it stops else it
tries to apply $v_2$ and so on. It fails if there is no solving tactic.

\ErrMsg \errindex{Cannot solve the goal}

\subsubsection[Identity]{Identity\tacindex{idtac}
\index{Tacticals!idtac@{\tt idtac}}}

The constant {\tt idtac} is the identity tactic: it leaves any goal
unchanged but it appears in the proof script.

\variant {\tt idtac \nelist{\messagetoken}{}}

This prints the given tokens. Strings and integers are printed
literally. If a (term) variable is given, its contents are printed.


\subsubsection[Failing]{Failing\tacindex{fail}
\index{Tacticals!fail@{\tt fail}}}

The tactic {\tt fail} is the always-failing tactic: it does not solve
any goal. It is useful for defining other tacticals since it can be
catched by {\tt try} or {\tt match goal}. 

\begin{Variants}
\item {\tt fail $n$}\\
The number $n$ is the failure level. If no level is specified, it
defaults to $0$.  The level is used by {\tt try} and {\tt match goal}.
If $0$, it makes {\tt match goal} considering the next clause
(backtracking). If non zero, the current {\tt match goal} block or
{\tt try} command is aborted and the level is decremented.

\item {\tt fail \nelist{\messagetoken}{}}\\
The given tokens are used for printing the failure message.

\item {\tt fail $n$ \nelist{\messagetoken}{}}\\
This is a combination of the previous variants.
\end{Variants}

\ErrMsg \errindex{Tactic Failure {\it message} (level $n$)}.

\subsubsection[Timeout]{Timeout\tacindex{timeout}
\index{Tacticals!timeout@{\tt timeout}}}

We can force a tactic to stop if it has not finished after a certain
amount of time:
\begin{quote}
{\tt timeout} {\num} {\tacexpr}
\end{quote}
{\tacexpr} is evaluated to $v$. $v$ must be a tactic value. $v$ is
normally applied, except that it is interrupted after ${\num}$ seconds
if it is still running. In this case the outcome is a failure.

Warning: For the moment, {\tt timeout} is based on elapsed time in
seconds, which is very
machine-dependent: a script that works on a quick machine may fail
on a slow one. The converse is even possible if you combine a
{\tt timeout} with some other tacticals. This tactical is hence
proposed only for convenience during debug or other development
phases, we strongly advise you to not leave any {\tt timeout} in
final scripts. Note also that this tactical isn't available on
the native Windows port of Coq.

\subsubsection[Local definitions]{Local definitions\index{Ltac!let}
\index{Ltac!let rec}
\index{let!in Ltac}
\index{let rec!in Ltac}}

Local definitions can be done as follows:
\begin{quote}
{\tt let} {\ident}$_1$ {\tt :=} {\tacexpr}$_1$\\
{\tt with} {\ident}$_2$ {\tt :=} {\tacexpr}$_2$\\
...\\
{\tt with} {\ident}$_n$ {\tt :=} {\tacexpr}$_n$ {\tt in}\\
{\tacexpr}
\end{quote}
each {\tacexpr}$_i$ is evaluated to $v_i$, then, {\tacexpr} is
evaluated by substituting $v_i$ to each occurrence of {\ident}$_i$,
for $i=1,...,n$. There is no dependencies between the {\tacexpr}$_i$
and the {\ident}$_i$.

Local definitions can be recursive by using {\tt let rec} instead of
{\tt let}. In this latter case, the definitions are evaluated lazily
so that the {\tt rec} keyword can be used also in non recursive cases
so as to avoid the eager evaluation of local definitions.

\subsubsection{Application}

An application is an expression of the following form:
\begin{quote}
{\qualid} {\tacarg}$_1$ ... {\tacarg}$_n$
\end{quote}
The reference {\qualid} must be bound to some defined tactic
definition expecting at least $n$ arguments.  The expressions
{\tacexpr}$_i$ are evaluated to $v_i$, for $i=1,...,n$.
%If {\tacexpr} is a {\tt Fun} or {\tt Rec} value then the body is evaluated by
%substituting $v_i$ to the formal parameters, for $i=1,...,n$. For recursive
%clauses, the bodies are lazily substituted (when an identifier to be evaluated
%is the name of a recursive clause).

%\subsection{Application of tactic values}

\subsubsection[Function construction]{Function construction\index{fun!in Ltac}
\index{Ltac!fun}}

A parameterized tactic can be built anonymously (without resorting to
local definitions) with:
\begin{quote}
{\tt fun} {\ident${}_1$} ... {\ident${}_n$} {\tt =>} {\tacexpr}
\end{quote}
Indeed, local definitions of functions are a syntactic sugar for
binding a {\tt fun} tactic to an identifier.

\subsubsection[Pattern matching on terms]{Pattern matching on terms\index{Ltac!match}
\index{match!in Ltac}}

We can carry out pattern matching on terms with:
\begin{quote}
{\tt match} {\tacexpr} {\tt with}\\
~~~{\cpattern}$_1$ {\tt =>} {\tacexpr}$_1$\\
~{\tt |} {\cpattern}$_2$ {\tt =>} {\tacexpr}$_2$\\
~...\\
~{\tt |} {\cpattern}$_n$ {\tt =>} {\tacexpr}$_n$\\
~{\tt |} {\tt \_} {\tt =>} {\tacexpr}$_{n+1}$\\
{\tt end}
\end{quote}
The expression {\tacexpr} is evaluated and should yield a term which
is matched against {\cpattern}$_1$. The matching is non-linear: if a
metavariable occurs more than once, it should match the same
expression every time. It is first-order except on the
variables of the form {\tt @?id} that occur in head position of an
application. For these variables, the matching is second-order and
returns a functional term.

If the matching with {\cpattern}$_1$ succeeds, then {\tacexpr}$_1$ is
evaluated into some value by substituting the pattern matching
instantiations to the metavariables. If {\tacexpr}$_1$ evaluates to a
tactic and the {\tt match} expression is in position to be applied to
a goal (e.g. it is not bound to a variable by a {\tt let in}), then
this tactic is applied. If the tactic succeeds, the list of resulting
subgoals is the result of the {\tt match} expression. If
{\tacexpr}$_1$ does not evaluate to a tactic or if the {\tt match}
expression is not in position to be applied to a goal, then the result
of the evaluation of {\tacexpr}$_1$ is the result of the {\tt match}
expression.

If the matching with {\cpattern}$_1$ fails, or if it succeeds but the
evaluation of {\tacexpr}$_1$ fails, or if the evaluation of
{\tacexpr}$_1$ succeeds but returns a tactic in execution position
whose execution fails, then {\cpattern}$_2$ is used and so on.  The
pattern {\_} matches any term and shunts all remaining patterns if
any. If all clauses fail (in particular, there is no pattern {\_})
then a no-matching-clause error is raised.

\begin{ErrMsgs}

\item \errindex{No matching clauses for match}

  No pattern can be used and, in particular, there is no {\tt \_} pattern.

\item \errindex{Argument of match does not evaluate to a term}

  This happens when {\tacexpr} does not denote a term.

\end{ErrMsgs}

\begin{Variants}

\item \index{lazymatch!in Ltac}
\index{Ltac!lazymatch}
Using {\tt lazymatch} instead of {\tt match} has an effect if the
right-hand-side of a clause returns a tactic. With {\tt match}, the
tactic is applied to the current goal (and the next clause is tried if
it fails). With {\tt lazymatch}, the tactic is directly returned as
the result of the whole {\tt lazymatch} block without being first
tried to be applied to the goal. Typically, if the {\tt lazymatch}
block is bound to some variable $x$ in a {\tt let in}, then tactic
expression gets bound to the variable $x$.

\item \index{context!in pattern}
There is a special form of patterns to match a subterm against the
pattern:
\begin{quote}
{\tt context} {\ident} {\tt [} {\cpattern} {\tt ]}
\end{quote}
It matches any term with a subterm matching {\cpattern}. If there is
a match, the optional {\ident} is assigned the ``matched context'', i.e.
the initial term where the matched subterm is replaced by a
hole. The example below will show how to use such term contexts.

If the evaluation of the right-hand-side of a valid match fails, the
next matching subterm is tried. If no further subterm matches, the
next clause is tried. Matching subterms are considered top-bottom and
from left to right (with respect to the raw printing obtained by
setting option {\tt Printing All}, see Section~\ref{SetPrintingAll}).

\begin{coq_example}
Ltac f x :=
  match x with
    context f [S ?X] => 
    idtac X;                    (* To display the evaluation order *)
    assert (p := refl_equal 1 : X=1);    (* To filter the case X=1 *)
    let x:= context f[O] in assert (x=O) (* To observe the context *)
  end.
Goal True.
f (3+4).
\end{coq_example}

\item \index{appcontext!in pattern}
For historical reasons, {\tt context} considers $n$-ary applications
such as {\tt (f 1 2)} as a whole, and not as a sequence of unary
applications {\tt ((f 1) 2)}. Hence {\tt context [f ?x]} will fail
to find a matching subterm in {\tt (f 1 2)}: if the pattern is a partial
application, the matched subterms will be necessarily be
applications with exactly the same number of arguments.
Alternatively, one may now use the following variant of {\tt context}:
\begin{quote}
{\tt appcontext} {\ident} {\tt [} {\cpattern} {\tt ]}
\end{quote}
The behavior of {\tt appcontext} is the same as the one of {\tt
  context}, except that a matching subterm could be a partial
part of a longer application. For instance, in {\tt (f 1 2)},
an {\tt appcontext [f ?x]} will find the matching subterm {\tt (f 1)}. 

\end{Variants}

\subsubsection[Pattern matching on goals]{Pattern matching on goals\index{Ltac!match goal}
\index{Ltac!match reverse goal}
\index{match goal!in Ltac}
\index{match reverse goal!in Ltac}}

We can make pattern matching on goals using the following expression:
\begin{quote}
\begin{tabbing}
{\tt match goal with}\\
~~\={\tt |} $hyp_{1,1}${\tt ,}...{\tt ,}$hyp_{1,m_1}$
   ~~{\tt |-}{\cpattern}$_1${\tt =>} {\tacexpr}$_1$\\
  \>{\tt |} $hyp_{2,1}${\tt ,}...{\tt ,}$hyp_{2,m_2}$
   ~~{\tt |-}{\cpattern}$_2${\tt =>} {\tacexpr}$_2$\\
~~...\\
  \>{\tt |} $hyp_{n,1}${\tt ,}...{\tt ,}$hyp_{n,m_n}$
   ~~{\tt |-}{\cpattern}$_n${\tt =>} {\tacexpr}$_n$\\
  \>{\tt |\_}~~~~{\tt =>} {\tacexpr}$_{n+1}$\\
{\tt end}
\end{tabbing}
\end{quote}

If each hypothesis pattern $hyp_{1,i}$, with $i=1,...,m_1$
is matched (non-linear first-order unification) by an hypothesis of
the goal and if {\cpattern}$_1$ is matched by the conclusion of the
goal, then {\tacexpr}$_1$ is evaluated to $v_1$ by substituting the
pattern matching to the metavariables and the real hypothesis names
bound to the possible hypothesis names occurring in the hypothesis
patterns. If $v_1$ is a tactic value, then it is applied to the
goal. If this application fails, then another combination of
hypotheses is tried with the same proof context pattern. If there is
no other combination of hypotheses then the second proof context
pattern is tried and so on. If the next to last proof context pattern
fails then {\tacexpr}$_{n+1}$ is evaluated to $v_{n+1}$ and $v_{n+1}$
is applied. Note also that matching against subterms (using the {\tt
context} {\ident} {\tt [} {\cpattern} {\tt ]}) is available and may
itself induce extra backtrackings.

\ErrMsg \errindex{No matching clauses for match goal}

No clause succeeds, i.e. all matching patterns, if any,
fail at the application of the right-hand-side.

\medskip

It is important to know that each hypothesis of the goal can be
matched by at most one hypothesis pattern. The order of matching is
the following: hypothesis patterns are examined from the right to the
left (i.e. $hyp_{i,m_i}$ before $hyp_{i,1}$). For each hypothesis
pattern, the goal hypothesis are matched in order (fresher hypothesis
first), but it possible to reverse this order (older first) with
the {\tt match reverse goal with} variant.

\variant
\index{lazymatch goal!in Ltac}
\index{Ltac!lazymatch goal}
\index{lazymatch reverse goal!in Ltac}
\index{Ltac!lazymatch reverse goal}
Using {\tt lazymatch} instead of {\tt match} has an effect if the
right-hand-side of a clause returns a tactic. With {\tt match}, the
tactic is applied to the current goal (and the next clause is tried if
it fails). With {\tt lazymatch}, the tactic is directly returned as
the result of the whole {\tt lazymatch} block without being first
tried to be applied to the goal. Typically, if the {\tt lazymatch}
block is bound to some variable $x$ in a {\tt let in}, then tactic
expression gets bound to the variable $x$.

\begin{coq_example}
Ltac test_lazy :=
  lazymatch goal with
  | _ => idtac "here"; fail 
  | _ => idtac "wasn't lazy"; trivial
  end.
Ltac test_eager :=
  match goal with
  | _ => idtac "here"; fail 
  | _ => idtac "wasn't lazy"; trivial
  end.
Goal True.
test_lazy || idtac "was lazy".
test_eager || idtac "was lazy".
\end{coq_example}

\subsubsection[Filling a term context]{Filling a term context\index{context!in expression}}

The following expression is not a tactic in the sense that it does not
produce subgoals but generates a term to be used in tactic
expressions:
\begin{quote}
{\tt context} {\ident} {\tt [} {\tacexpr} {\tt ]}
\end{quote}
{\ident} must denote a context variable bound by a {\tt context}
pattern of a {\tt match} expression. This expression evaluates
replaces the hole of the value of {\ident} by the value of
{\tacexpr}.

\ErrMsg \errindex{not a context variable}


\subsubsection[Generating fresh hypothesis names]{Generating fresh hypothesis names\index{Ltac!fresh}
\index{fresh!in Ltac}}

Tactics sometimes have to generate new names for hypothesis. Letting
the system decide a name with the {\tt intro} tactic is not so good
since it is very awkward to retrieve the name the system gave.
The following expression returns an identifier:
\begin{quote}
{\tt fresh} \nelist{\textrm{\textsl{component}}}{}
\end{quote}
It evaluates to an identifier unbound in the goal. This fresh
identifier is obtained by concatenating the value of the
\textrm{\textsl{component}}'s (each of them is, either an {\ident} which
has to refer to a name, or directly a name denoted by a
{\qstring}). If the resulting name is already used, it is padded
with a number so that it becomes fresh. If no component is
given, the name is a fresh derivative of the name {\tt H}.

\subsubsection[Computing in a constr]{Computing in a constr\index{Ltac!eval}
\index{eval!in Ltac}}

Evaluation of a term can be performed with:
\begin{quote}
{\tt eval} {\nterm{redexpr}} {\tt in} {\term}
\end{quote}
where \nterm{redexpr} is a reduction tactic among {\tt red}, {\tt
hnf}, {\tt compute}, {\tt simpl}, {\tt cbv}, {\tt lazy}, {\tt unfold},
{\tt fold}, {\tt pattern}.

\subsubsection{Type-checking a term}
%\tacindex{type of}
\index{Ltac!type of}
\index{type of!in Ltac}

The following returns the type of {\term}:

\begin{quote}
{\tt type of} {\term}
\end{quote}

\subsubsection[Accessing tactic decomposition]{Accessing tactic decomposition\tacindex{info}
\index{Tacticals!info@{\tt info}}}

Tactical ``{\tt info} {\tacexpr}'' is not really a tactical. For
elementary tactics, this is equivalent to \tacexpr. For complex tactic
like \texttt{auto}, it displays the operations performed by the
tactic.

\subsubsection[Proving a subgoal as a separate lemma]{Proving a subgoal as a separate lemma\tacindex{abstract}
\index{Tacticals!abstract@{\tt abstract}}}

From the outside ``\texttt{abstract \tacexpr}'' is the same as
{\tt solve \tacexpr}. Internally it saves an auxiliary lemma called 
{\ident}\texttt{\_subproof}\textit{n} where {\ident} is the name of the
current goal and \textit{n} is chosen so that this is a fresh name.

This tactical is useful with tactics such as \texttt{omega} or
\texttt{discriminate} that generate huge proof terms. With that tool
the user can avoid the explosion at time of the \texttt{Save} command
without having to cut manually the proof in smaller lemmas.

\begin{Variants}
\item \texttt{abstract {\tacexpr} using {\ident}}.\\
  Give explicitly the name of the auxiliary lemma.
\end{Variants}

\ErrMsg \errindex{Proof is not complete}

\subsubsection[Calling an external tactic]{Calling an external tactic\index{Ltac!external}}

The tactic {\tt external} allows to run an executable outside the
{\Coq} executable. The communication is done via an XML encoding of
constructions. The syntax of the command is

\begin{quote}
{\tt external} "\textsl{command}" "\textsl{request}" \nelist{\tacarg}{}
\end{quote}

The string \textsl{command}, to be interpreted in the default
execution path of the operating system, is the name of the external
command. The string \textsl{request} is the name of a request to be
sent to the external command. Finally the list of tactic arguments
have to evaluate to terms. An XML tree of the following form is sent
to the standard input of the external command.
\medskip

\begin{tabular}{l}
\texttt{<REQUEST req="}\textsl{request}\texttt{">}\\
the XML tree of the first argument\\
{\ldots}\\
the XML tree of the last argument\\
\texttt{</REQUEST>}\\
\end{tabular}
\medskip

Conversely, the external command must send on its standard output an
XML tree of the following forms:

\medskip
\begin{tabular}{l}
\texttt{<TERM>}\\
the XML tree of a term\\
\texttt{</TERM>}\\
\end{tabular}
\medskip

\noindent or 

\medskip
\begin{tabular}{l}
\texttt{<CALL uri="}\textsl{ltac\_qualified\_ident}\texttt{">}\\
the XML tree of a first argument\\
{\ldots}\\
the XML tree of a last argument\\
\texttt{</CALL>}\\
\end{tabular}

\medskip
\noindent where \textsl{ltac\_qualified\_ident} is the name of a
defined {\ltac} function and each subsequent XML tree is recursively a
\texttt{CALL} or a \texttt{TERM} node.

The Document Type Definition (DTD) for terms of the Calculus of
Inductive Constructions is the one developed as part of the MoWGLI
European project. It can be found in the file {\tt dev/doc/cic.dtd} of
the {\Coq} source archive.

An example of parser for this DTD, written in the Objective Caml -
Camlp4 language, can be found in the file {\tt parsing/g\_xml.ml4} of
the {\Coq} source archive.

\section[Tactic toplevel definitions]{Tactic toplevel definitions\comindex{Ltac}}

\subsection{Defining {\ltac} functions}

Basically, {\ltac} toplevel definitions are made as follows:
%{\tt Tactic Definition} {\ident} {\tt :=} {\tacexpr}\\
%
%{\tacexpr} is evaluated to $v$ and $v$ is associated to {\ident}. Next, every
%script is evaluated by substituting $v$ to {\ident}.
%
%We can define functional definitions by:\\
\begin{quote}
{\tt Ltac} {\ident} {\ident}$_1$ ... {\ident}$_n$ {\tt :=}
{\tacexpr}
\end{quote}
This defines a new {\ltac} function that can be used in any tactic
script or new {\ltac} toplevel definition.

\Rem The preceding definition can equivalently be written:
\begin{quote}
{\tt Ltac} {\ident} {\tt := fun} {\ident}$_1$ ... {\ident}$_n$
{\tt =>} {\tacexpr}
\end{quote}
Recursive and mutual recursive function definitions are also
possible with the syntax:
\begin{quote}
{\tt Ltac} {\ident}$_1$ {\ident}$_{1,1}$ ...
{\ident}$_{1,m_1}$~~{\tt :=} {\tacexpr}$_1$\\
{\tt with} {\ident}$_2$ {\ident}$_{2,1}$ ... {\ident}$_{2,m_2}$~~{\tt :=}
{\tacexpr}$_2$\\
...\\
{\tt with} {\ident}$_n$ {\ident}$_{n,1}$ ... {\ident}$_{n,m_n}$~~{\tt :=}
{\tacexpr}$_n$
\end{quote}
\medskip
It is also possible to \emph{redefine} an existing user-defined tactic
using the syntax:
\begin{quote}
{\tt Ltac} {\qualid} {\ident}$_1$ ... {\ident}$_n$ {\tt ::=}
{\tacexpr}
\end{quote}
A previous definition of \qualid must exist in the environment.
The new definition will always be used instead of the old one and
it goes accross module boundaries.

If preceded by the keyword {\tt Local} the tactic definition will not
be exported outside the current module.

\subsection[Printing {\ltac} tactics]{Printing {\ltac} tactics\comindex{Print Ltac}}

Defined {\ltac} functions can be displayed using the command

\begin{quote}
{\tt Print Ltac {\qualid}.}
\end{quote}

\section[Debugging {\ltac} tactics]{Debugging {\ltac} tactics\comindex{Set Ltac Debug}
\comindex{Unset Ltac Debug}
\comindex{Test Ltac Debug}}

The {\ltac} interpreter comes with a step-by-step debugger. The
debugger can be activated using the command

\begin{quote}
{\tt Set Ltac Debug.}
\end{quote}

\noindent and deactivated using the command

\begin{quote}
{\tt Unset Ltac Debug.}
\end{quote}

To know if the debugger is on, use the command \texttt{Test Ltac Debug}.
When the debugger is activated, it stops at every step of the
evaluation of the current {\ltac} expression and it prints information
on what it is doing. The debugger stops, prompting for a command which
can be one of the following:

\medskip
\begin{tabular}{ll}
simple newline: & go to the next step\\
h: & get help\\
x: & exit current evaluation\\
s: & continue current evaluation without stopping\\
r$n$: & advance $n$ steps further\\
\end{tabular}
\endinput

\subsection{Permutation on closed lists}

\begin{figure}[b]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example*}
Require Import List.
Section Sort.
Variable A : Set.
Inductive permut : list A -> list A -> Prop :=
  | permut_refl   : forall l, permut l l
  | permut_cons   :
      forall a l0 l1, permut l0 l1 -> permut (a :: l0) (a :: l1)
  | permut_append : forall a l, permut (a :: l) (l ++ a :: nil)
  | permut_trans  :
      forall l0 l1 l2, permut l0 l1 -> permut l1 l2 -> permut l0 l2.
End Sort.
\end{coq_example*}
\end{center}
\caption{Definition of the permutation predicate}
\label{permutpred}
\end{figure}


Another more complex example is the problem of permutation on closed
lists. The aim is to show that a closed list is a permutation of
another one.  First, we define the permutation predicate as shown on
Figure~\ref{permutpred}.
 
\begin{figure}[p]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac Permut n :=
  match goal with
  | |- (permut _ ?l ?l) => apply permut_refl
  | |- (permut _ (?a :: ?l1) (?a :: ?l2)) =>
      let newn := eval compute in (length l1) in
      (apply permut_cons; Permut newn)
  | |- (permut ?A (?a :: ?l1) ?l2) =>
      match eval compute in n with
      | 1 => fail
      | _ =>
          let l1' := constr:(l1 ++ a :: nil) in
          (apply (permut_trans A (a :: l1) l1' l2);
            [ apply permut_append | compute; Permut (pred n) ])
      end
  end.
Ltac PermutProve :=
  match goal with
  | |- (permut _ ?l1 ?l2) =>
      match eval compute in (length l1 = length l2) with
      | (?n = ?n) => Permut n
      end
  end.
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Permutation tactic}
\label{permutltac}
\end{figure}

\begin{figure}[p]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example*}
Lemma permut_ex1 :
  permut nat (1 :: 2 :: 3 :: nil) (3 :: 2 :: 1 :: nil).
Proof.
PermutProve.
Qed.

Lemma permut_ex2 :
  permut nat
    (0 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: 9 :: nil)
    (0 :: 2 :: 4 :: 6 :: 8 :: 9 :: 7 :: 5 :: 3 :: 1 :: nil).
Proof.
PermutProve.
Qed.
\end{coq_example*}
\end{minipage}}
\end{center}
\caption{Examples of {\tt PermutProve} use}
\label{permutlem}
\end{figure}

Next, we can write naturally the tactic and the result can be seen on
Figure~\ref{permutltac}. We can notice that we use two toplevel
definitions {\tt PermutProve} and {\tt Permut}. The function to be
called is {\tt PermutProve} which computes the lengths of the two
lists and calls {\tt Permut} with the length if the two lists have the
same length. {\tt Permut} works as expected.  If the two lists are
equal, it concludes. Otherwise, if the lists have identical first
elements, it applies {\tt Permut} on the tail of the lists.  Finally,
if the lists have different first elements, it puts the first element
of one of the lists (here the second one which appears in the {\tt
  permut} predicate) at the end if that is possible, i.e., if the new
first element has been at this place previously. To verify that all
rotations have been done for a list, we use the length of the list as
an argument for {\tt Permut} and this length is decremented for each
rotation down to, but not including, 1 because for a list of length
$n$, we can make exactly $n-1$ rotations to generate at most $n$
distinct lists. Here, it must be noticed that we use the natural
numbers of {\Coq} for the rotation counter. On Figure~\ref{ltac}, we
can see that it is possible to use usual natural numbers but they are
only used as arguments for primitive tactics and they cannot be
handled, in particular, we cannot make computations with them. So, a
natural choice is to use {\Coq} data structures so that {\Coq} makes
the computations (reductions) by {\tt eval compute in} and we can get
the terms back by {\tt match}.

With {\tt PermutProve}, we can now prove lemmas such those shown on
Figure~\ref{permutlem}.


\subsection{Deciding intuitionistic propositional logic}

\begin{figure}[tbp]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac Axioms :=
  match goal with
  | |- True => trivial
  | _:False |- _  => elimtype False; assumption
  | _:?A |- ?A  => auto
  end.
Ltac DSimplif :=
  repeat
   (intros;
    match goal with
     | id:(~ _) |- _ => red in id
     | id:(_ /\ _) |- _ =>
         elim id; do 2 intro; clear id
     | id:(_ \/ _) |- _ =>
         elim id; intro; clear id
     | id:(?A /\ ?B -> ?C) |- _ =>
         cut (A -> B -> C);
          [ intro | intros; apply id; split; assumption ]
     | id:(?A \/ ?B -> ?C) |- _ =>
         cut (B -> C);
          [ cut (A -> C);
             [ intros; clear id
             | intro; apply id; left; assumption ]
          | intro; apply id; right; assumption ]
     | id0:(?A -> ?B),id1:?A |- _ =>
         cut B; [ intro; clear id0 | apply id0; assumption ]
     | |- (_ /\ _) => split
     | |- (~ _) => red
     end).
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Deciding intuitionistic propositions (1)}
\label{tautoltaca}
\end{figure}

\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac TautoProp :=
  DSimplif;
   Axioms ||
     match goal with
     | id:((?A -> ?B) -> ?C) |- _ =>
          cut (B -> C);
          [ intro; cut (A -> B);
             [ intro; cut C;
                [ intro; clear id | apply id; assumption ]
             | clear id ]
          | intro; apply id; intro; assumption ]; TautoProp
     | id:(~ ?A -> ?B) |- _ =>
         cut (False -> B);
          [ intro; cut (A -> False);
             [ intro; cut B;
                [ intro; clear id | apply id; assumption ]
             | clear id ]
          | intro; apply id; red; intro; assumption ]; TautoProp
     | |- (_ \/ _) => (left; TautoProp) || (right; TautoProp)
     end.
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Deciding intuitionistic propositions (2)}
\label{tautoltacb}
\end{figure}

The pattern matching on goals allows a complete and so a powerful
backtracking when returning tactic values. An interesting application
is the problem of deciding intuitionistic propositional logic.
Considering the contraction-free sequent calculi {\tt LJT*} of
Roy~Dyckhoff (\cite{Dyc92}), it is quite natural to code such a tactic
using the tactic language. On Figure~\ref{tautoltaca}, the tactic {\tt
  Axioms} tries to conclude using usual axioms. The {\tt DSimplif}
tactic applies all the reversible rules of Dyckhoff's system.
Finally, on Figure~\ref{tautoltacb}, the {\tt TautoProp} tactic (the
main tactic to be called) simplifies with {\tt DSimplif}, tries to
conclude with {\tt Axioms} and tries several paths using the
backtracking rules (one of the four Dyckhoff's rules for the left
implication to get rid of the contraction and the right or).

\begin{figure}[tb]
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example*}
Lemma tauto_ex1 : forall A B:Prop, A /\ B -> A \/ B.
Proof.
TautoProp.
Qed.

Lemma tauto_ex2 :
   forall A B:Prop, (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
Proof.
TautoProp.
Qed.
\end{coq_example*}
\end{minipage}}
\end{center}
\caption{Proofs of tautologies with {\tt TautoProp}}
\label{tautolem}
\end{figure}

For example, with {\tt TautoProp}, we can prove tautologies like those of
Figure~\ref{tautolem}.


\subsection{Deciding type isomorphisms}

A more tricky problem is to decide equalities between types and modulo
isomorphisms. Here, we choose to use the isomorphisms of the simply typed
$\lb{}$-calculus with Cartesian product and $unit$ type (see, for example,
\cite{RC95}). The axioms of this $\lb{}$-calculus are given by
Figure~\ref{isosax}.

\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_eval}
Reset Initial.
\end{coq_eval}
\begin{coq_example*}
Open Scope type_scope.
Section Iso_axioms.
Variables A B C : Set.
Axiom Com : A * B = B * A.
Axiom Ass : A * (B * C) = A * B * C.
Axiom Cur : (A * B -> C) = (A -> B -> C).
Axiom Dis : (A -> B * C) = (A -> B) * (A -> C).
Axiom P_unit : A * unit = A.
Axiom AR_unit : (A -> unit) = unit.
Axiom AL_unit : (unit -> A) = A.
Lemma Cons : B = C -> A * B = A * C.
Proof.
intro Heq; rewrite Heq; apply refl_equal.
Qed.
End Iso_axioms.
\end{coq_example*}
\end{minipage}}
\end{center}
\caption{Type isomorphism axioms}
\label{isosax}
\end{figure}

The tactic to judge equalities modulo this axiomatization can be written as
shown on Figures~\ref{isosltac1} and~\ref{isosltac2}. The algorithm is quite
simple. Types are reduced using axioms that can be oriented (this done by {\tt
MainSimplif}). The normal forms are sequences of Cartesian
products without Cartesian product in the left component. These normal forms
are then compared modulo permutation of the components (this is done by {\tt
CompareStruct}). The main tactic to be called and realizing this algorithm is
{\tt IsoProve}.

\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac DSimplif trm :=
  match trm with
  | (?A * ?B * ?C) =>
      rewrite <- (Ass A B C); try MainSimplif
  | (?A * ?B -> ?C) =>
      rewrite (Cur A B C); try MainSimplif
  | (?A -> ?B * ?C) =>
      rewrite (Dis A B C); try MainSimplif
  | (?A * unit) =>
      rewrite (P_unit A); try MainSimplif
  | (unit * ?B) =>
      rewrite (Com unit B); try MainSimplif
  | (?A -> unit) =>
      rewrite (AR_unit A); try MainSimplif
  | (unit -> ?B) =>
      rewrite (AL_unit B); try MainSimplif
  | (?A * ?B) =>
      (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
  | (?A -> ?B) =>
      (DSimplif A; try MainSimplif) || (DSimplif B; try MainSimplif)
  end
 with MainSimplif :=
  match goal with
  | |- (?A = ?B) => try DSimplif A; try DSimplif B
  end.
Ltac Length trm :=
  match trm with
  | (_ * ?B) => let succ := Length B in constr:(S succ)
  | _ => constr:1
  end.
Ltac assoc := repeat rewrite <- Ass.
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Type isomorphism tactic (1)}
\label{isosltac1}
\end{figure}

\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example}
Ltac DoCompare n :=
  match goal with
  | [ |- (?A = ?A) ] => apply refl_equal
  | [ |- (?A * ?B = ?A * ?C) ] =>
    apply Cons; let newn := Length B in DoCompare newn
  | [ |- (?A * ?B = ?C) ] =>
    match eval compute in n with
    | 1 => fail
    | _ =>
      pattern (A * B) at 1; rewrite Com; assoc; DoCompare (pred n)
    end
  end.
Ltac CompareStruct :=
  match goal with
  | [ |- (?A = ?B) ] =>
      let l1 := Length A
      with l2 := Length B in
      match eval compute in (l1 = l2) with
      | (?n = ?n) => DoCompare n
      end
  end.
Ltac IsoProve := MainSimplif; CompareStruct.
\end{coq_example}
\end{minipage}}
\end{center}
\caption{Type isomorphism tactic (2)}
\label{isosltac2}
\end{figure}

Figure~\ref{isoslem} gives examples of what can be solved by {\tt IsoProve}.

\begin{figure}
\begin{center}
\fbox{\begin{minipage}{0.95\textwidth}
\begin{coq_example*}
Lemma isos_ex1 : 
  forall A B:Set, A * unit * B = B * (unit * A).
Proof.
intros; IsoProve.
Qed.

Lemma isos_ex2 :
  forall A B C:Set,
    (A * unit -> B * (C * unit)) =
    (A * unit -> (C -> unit) * C) * (unit -> A -> B).
Proof.
intros; IsoProve.
Qed.
\end{coq_example*}
\end{minipage}}
\end{center}
\caption{Type equalities solved by {\tt IsoProve}}
\label{isoslem}
\end{figure}

%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "Reference-Manual"
%%% End: