summaryrefslogtreecommitdiff
path: root/contrib/setoid_ring/InitialRing.v
blob: 7df68cc05ecb9ba74b3f352dd2bc8575fc0fc81a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Require Import ZArith_base.
Require Import BinInt.
Require Import BinNat.
Require Import Setoid.
Require Import Ring_theory.
Require Import Ring_tac.
Require Import Ring_polynom.
Set Implicit Arguments.

Import RingSyntax.

(** Z is a ring and a setoid*)

Lemma Zsth : Setoid_Theory Z (@eq Z).
Proof (Eqsth Z).
 
Lemma Zeqe : ring_eq_ext Zplus Zmult Zopp (@eq Z).
Proof (Eq_ext Zplus Zmult Zopp).

Lemma Zth : ring_theory Z0 (Zpos xH) Zplus Zmult Zminus Zopp (@eq Z).
Proof.
 constructor. exact Zplus_0_l. exact Zplus_comm. exact Zplus_assoc.
 exact Zmult_1_l. exact Zmult_comm. exact Zmult_assoc.
 exact Zmult_plus_distr_l. trivial. exact Zminus_diag.
Qed.

 Lemma Zeqb_ok : forall x y, Zeq_bool x y = true -> x = y.
 Proof.
  intros x y.
  assert (H := Zcompare_Eq_eq x y);unfold Zeq_bool;
  destruct (Zcompare x y);intros H1;auto;discriminate H1.
 Qed.


(** Two generic morphisms from Z to (abrbitrary) rings, *)
(**second one is more convenient for proofs but they are ext. equal*)
Section ZMORPHISM.
 Variable R : Type.
 Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
 Variable req : R -> R -> Prop.
  Notation "0" := rO.  Notation "1" := rI.
  Notation "x + y" := (radd x y).  Notation "x * y " := (rmul x y).
  Notation "x - y " := (rsub x y).  Notation "- x" := (ropp x).
  Notation "x == y" := (req x y).
  Variable Rsth : Setoid_Theory R req.
     Add Setoid R req Rsth as R_setoid3.
     Ltac rrefl := gen_reflexivity Rsth.
 Variable Reqe : ring_eq_ext radd rmul ropp req.
   Add Morphism radd : radd_ext3.  exact (Radd_ext Reqe). Qed.
   Add Morphism rmul : rmul_ext3.  exact (Rmul_ext Reqe). Qed.
   Add Morphism ropp : ropp_ext3.  exact (Ropp_ext Reqe). Qed.

 Fixpoint gen_phiPOS1 (p:positive) : R :=
  match p with
  | xH => 1
  | xO p => (1 + 1) * (gen_phiPOS1 p)
  | xI p => 1 + ((1 + 1) * (gen_phiPOS1 p))
  end.

 Fixpoint gen_phiPOS (p:positive) : R :=
  match p with
  | xH => 1 
  | xO xH => (1 + 1)
  | xO p => (1 + 1) * (gen_phiPOS p)
  | xI xH => 1 + (1 +1)
  | xI p => 1 + ((1 + 1) * (gen_phiPOS p))
  end.

 Definition gen_phiZ1 z :=
  match z with
  | Zpos p => gen_phiPOS1 p
  | Z0 => 0
  | Zneg p => -(gen_phiPOS1 p)
  end.
 
 Definition gen_phiZ z := 
  match z with
  | Zpos p => gen_phiPOS p
  | Z0 => 0
  | Zneg p => -(gen_phiPOS p)
  end.
 Notation "[ x ]" := (gen_phiZ x).   
 
 Section ALMOST_RING.
 Variable ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
   Add Morphism rsub : rsub_ext3. exact (ARsub_ext Rsth Reqe ARth). Qed.
   Ltac norm := gen_srewrite 0 1 radd rmul rsub ropp req Rsth Reqe ARth.
   Ltac add_push := gen_add_push radd Rsth Reqe ARth.
 
 Lemma same_gen : forall x, gen_phiPOS1 x == gen_phiPOS x.
 Proof.
  induction x;simpl. 
  rewrite IHx;destruct x;simpl;norm.
  rewrite IHx;destruct x;simpl;norm.
  rrefl.
 Qed.

 Lemma ARgen_phiPOS_Psucc : forall x,
   gen_phiPOS1 (Psucc x) == 1 + (gen_phiPOS1 x).
 Proof.
  induction x;simpl;norm.
  rewrite IHx;norm.
  add_push 1;rrefl.
 Qed.

 Lemma ARgen_phiPOS_add : forall x y,
   gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y).
 Proof.
  induction x;destruct y;simpl;norm.
  rewrite Pplus_carry_spec.
  rewrite ARgen_phiPOS_Psucc.
  rewrite IHx;norm.
  add_push (gen_phiPOS1 y);add_push 1;rrefl.
  rewrite IHx;norm;add_push (gen_phiPOS1 y);rrefl.
  rewrite ARgen_phiPOS_Psucc;norm;add_push 1;rrefl.
  rewrite IHx;norm;add_push(gen_phiPOS1 y); add_push 1;rrefl.
  rewrite IHx;norm;add_push(gen_phiPOS1 y);rrefl.
  add_push 1;rrefl.
  rewrite ARgen_phiPOS_Psucc;norm;add_push 1;rrefl.
 Qed.

 Lemma ARgen_phiPOS_mult :
   forall x y, gen_phiPOS1 (x * y) == gen_phiPOS1 x * gen_phiPOS1 y.
 Proof.
  induction x;intros;simpl;norm.
  rewrite ARgen_phiPOS_add;simpl;rewrite IHx;norm.
  rewrite IHx;rrefl.
 Qed.

 End ALMOST_RING.

 Variable Rth : ring_theory 0 1 radd rmul rsub ropp req.
 Let ARth := Rth_ARth Rsth Reqe Rth.
   Add Morphism rsub : rsub_ext4. exact (ARsub_ext Rsth Reqe ARth). Qed.
   Ltac norm := gen_srewrite 0 1 radd rmul rsub ropp req Rsth Reqe ARth.
   Ltac add_push := gen_add_push radd Rsth Reqe ARth.
  
(*morphisms are extensionaly equal*)
 Lemma same_genZ : forall x, [x] == gen_phiZ1 x.
 Proof.
  destruct x;simpl; try rewrite (same_gen ARth);rrefl.
 Qed.
 
 Lemma gen_Zeqb_ok : forall x y, 
   Zeq_bool x y = true -> [x] == [y].
 Proof.
  intros x y H; repeat rewrite same_genZ.
  assert (H1 := Zeqb_ok x y H);unfold IDphi in H1.
  rewrite H1;rrefl.
 Qed.
  
 Lemma gen_phiZ1_add_pos_neg : forall x y,
 gen_phiZ1
    match (x ?= y)%positive Eq with
    | Eq => Z0
    | Lt => Zneg (y - x)
    | Gt => Zpos (x - y)
    end 
 == gen_phiPOS1 x + -gen_phiPOS1 y.
 Proof.
  intros x y.
  assert (H:= (Pcompare_Eq_eq x y)); assert (H0 := Pminus_mask_Gt x y).
  generalize (Pminus_mask_Gt y x).
  replace Eq with (CompOpp Eq);[intro H1;simpl|trivial].
  rewrite <- Pcompare_antisym in H1.
  destruct ((x ?= y)%positive Eq).
  rewrite H;trivial. rewrite (Ropp_def Rth);rrefl.
  destruct H1 as [h [Heq1 [Heq2 Hor]]];trivial.
  unfold Pminus; rewrite Heq1;rewrite <- Heq2.
  rewrite (ARgen_phiPOS_add ARth);simpl;norm.
  rewrite (Ropp_def Rth);norm.
  destruct H0 as [h [Heq1 [Heq2 Hor]]];trivial.
  unfold Pminus; rewrite Heq1;rewrite <- Heq2.
  rewrite (ARgen_phiPOS_add ARth);simpl;norm.
  add_push (gen_phiPOS1 h);rewrite (Ropp_def Rth); norm.
 Qed.

 Lemma match_compOpp : forall x (B:Type) (be bl bg:B),
  match CompOpp x with Eq => be | Lt => bl | Gt => bg end 
  = match x with Eq => be | Lt => bg | Gt => bl end.
 Proof. destruct x;simpl;intros;trivial. Qed.

 Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y].
 Proof.
  intros x y; repeat rewrite same_genZ; generalize x y;clear x y.
  induction x;destruct y;simpl;norm.
  apply (ARgen_phiPOS_add ARth).
  apply gen_phiZ1_add_pos_neg.
  replace Eq with (CompOpp Eq);trivial.
  rewrite <- Pcompare_antisym;simpl.
  rewrite match_compOpp.    
  rewrite (Radd_comm Rth).
  apply gen_phiZ1_add_pos_neg.
  rewrite (ARgen_phiPOS_add ARth); norm.
 Qed.

 Lemma gen_phiZ_mul : forall x y, [x * y] == [x] * [y].
 Proof.
  intros x y;repeat rewrite same_genZ.
  destruct x;destruct y;simpl;norm;
  rewrite  (ARgen_phiPOS_mult ARth);try (norm;fail).
  rewrite (Ropp_opp Rsth Reqe Rth);rrefl.
 Qed.

 Lemma gen_phiZ_ext : forall x y : Z, x = y -> [x] == [y].
 Proof. intros;subst;rrefl. Qed.

(*proof that [.] satisfies morphism specifications*)
 Lemma gen_phiZ_morph : 
  ring_morph 0 1 radd rmul rsub ropp req Z0 (Zpos xH) 
   Zplus Zmult Zminus Zopp Zeq_bool gen_phiZ.
 Proof. 
  assert ( SRmorph : semi_morph 0 1 radd rmul req Z0 (Zpos xH) 
                  Zplus Zmult Zeq_bool gen_phiZ).
   apply mkRmorph;simpl;try rrefl.
   apply gen_phiZ_add.  apply gen_phiZ_mul. apply gen_Zeqb_ok.
  apply  (Smorph_morph Rsth Reqe Rth Zsth Zth SRmorph gen_phiZ_ext).
 Qed.

End ZMORPHISM.

(** N is a semi-ring and a setoid*)
Lemma Nsth : Setoid_Theory N (@eq N).
Proof (Eqsth N).

Lemma Nseqe : sring_eq_ext Nplus Nmult (@eq N).
Proof (Eq_s_ext Nplus Nmult).

Lemma Nth : semi_ring_theory N0 (Npos xH) Nplus Nmult (@eq N).
Proof.
 constructor. exact Nplus_0_l. exact Nplus_comm. exact Nplus_assoc.
 exact Nmult_1_l. exact Nmult_0_l. exact Nmult_comm. exact Nmult_assoc.
 exact Nmult_plus_distr_r. 
Qed.

Definition Nsub := SRsub Nplus.
Definition Nopp := (@SRopp N).

Lemma Neqe : ring_eq_ext Nplus Nmult Nopp (@eq N).
Proof (SReqe_Reqe Nseqe).

Lemma Nath : 
 almost_ring_theory N0 (Npos xH) Nplus Nmult Nsub Nopp (@eq N).
Proof (SRth_ARth Nsth Nth).
 
Definition Neq_bool (x y:N) := 
  match Ncompare x y with
  | Eq => true
  | _ => false
  end.

Lemma Neq_bool_ok : forall x y, Neq_bool x y = true -> x = y.
 Proof.
  intros x y;unfold Neq_bool.
  assert (H:=Ncompare_Eq_eq x y); 
   destruct (Ncompare x y);intros;try discriminate.
  rewrite H;trivial. 
 Qed.

Lemma Neq_bool_complete : forall x y, Neq_bool x y = true -> x = y.
 Proof.
  intros x y;unfold Neq_bool.
  assert (H:=Ncompare_Eq_eq x y); 
   destruct (Ncompare x y);intros;try discriminate.
  rewrite H;trivial. 
 Qed.

(**Same as above : definition of two,extensionaly equal, generic morphisms *)
(**from N to any semi-ring*)
Section NMORPHISM.
 Variable R : Type.
 Variable  (rO rI : R) (radd rmul: R->R->R).
 Variable req : R -> R -> Prop.
  Notation "0" := rO.  Notation "1" := rI.
  Notation "x + y" := (radd x y).  Notation "x * y " := (rmul x y).
 Variable Rsth : Setoid_Theory R req.
     Add Setoid R req Rsth as R_setoid4.
     Ltac rrefl := gen_reflexivity Rsth.
 Variable SReqe : sring_eq_ext radd rmul req.
 Variable SRth : semi_ring_theory 0 1 radd rmul req. 
 Let ARth := SRth_ARth Rsth SRth.
 Let Reqe := SReqe_Reqe SReqe.
 Let ropp := (@SRopp R).
 Let rsub := (@SRsub R radd).
  Notation "x - y " := (rsub x y).  Notation "- x" := (ropp x).
  Notation "x == y" := (req x y).
   Add Morphism radd : radd_ext4.  exact (Radd_ext Reqe). Qed.
   Add Morphism rmul : rmul_ext4.  exact (Rmul_ext Reqe). Qed.
   Add Morphism ropp : ropp_ext4.  exact (Ropp_ext Reqe). Qed.
   Add Morphism rsub : rsub_ext5.  exact (ARsub_ext Rsth Reqe ARth). Qed.
   Ltac norm := gen_srewrite 0 1 radd rmul rsub ropp req Rsth Reqe ARth.
  
 Definition gen_phiN1 x :=
  match x with
  | N0 => 0
  | Npos x => gen_phiPOS1 1 radd rmul x
  end. 

 Definition gen_phiN x :=
  match x with
  | N0 => 0
  | Npos x => gen_phiPOS 1 radd rmul x
  end. 
 Notation "[ x ]" := (gen_phiN x).   
  
 Lemma same_genN : forall x, [x] == gen_phiN1 x.
 Proof.
  destruct x;simpl. rrefl.
  rewrite (same_gen Rsth Reqe ARth);rrefl.
 Qed.

 Lemma gen_phiN_add : forall x y, [x + y] == [x] + [y].
 Proof.
  intros x y;repeat rewrite same_genN.
  destruct x;destruct y;simpl;norm.
  apply (ARgen_phiPOS_add Rsth Reqe ARth).
 Qed.
 
 Lemma gen_phiN_mult : forall x y, [x * y] == [x] * [y].
 Proof.
  intros x y;repeat rewrite same_genN.
  destruct x;destruct y;simpl;norm.
  apply (ARgen_phiPOS_mult Rsth Reqe ARth).
 Qed.

 Lemma gen_phiN_sub : forall x y, [Nsub x y] == [x] - [y].
 Proof. exact gen_phiN_add. Qed.

(*gen_phiN satisfies morphism specifications*)
 Lemma gen_phiN_morph : ring_morph 0 1 radd rmul rsub ropp req
                           N0 (Npos xH) Nplus Nmult Nsub Nopp Neq_bool gen_phiN.
 Proof.
  constructor;intros;simpl; try rrefl.
  apply gen_phiN_add. apply gen_phiN_sub.  apply gen_phiN_mult.
  rewrite (Neq_bool_ok x y);trivial. rrefl.
 Qed.

End NMORPHISM.

 (* syntaxification of constants in an abstract ring:
    the inverse of gen_phiPOS *)
 Ltac inv_gen_phi_pos rI add mul t :=
   let rec inv_cst t :=
   match t with
     rI => constr:1%positive
   | (add rI rI) => constr:2%positive
   | (add rI (add rI rI)) => constr:3%positive
   | (mul (add rI rI) ?p) => (* 2p *)
       match inv_cst p with
         NotConstant => NotConstant
       | 1%positive => NotConstant (* 2*1 is not convertible to 2 *)
       | ?p => constr:(xO p)
       end
   | (add rI (mul (add rI rI) ?p)) => (* 1+2p *)
       match inv_cst p with
         NotConstant => NotConstant
       | 1%positive => NotConstant
       | ?p => constr:(xI p)
       end
   | _ => NotConstant
   end in
   inv_cst t.

(* The inverse of gen_phiN *)
 Ltac inv_gen_phiN rO rI add mul t :=
   match t with
     rO => constr:0%N
   | _ =>
     match inv_gen_phi_pos rI add mul t with
       NotConstant => NotConstant
     | ?p => constr:(Npos p)
     end
   end.

(* The inverse of gen_phiZ *)
 Ltac inv_gen_phiZ rO rI add mul opp t :=
   match t with
     rO => constr:0%Z
   | (opp ?p) =>
     match inv_gen_phi_pos rI add mul p with
       NotConstant => NotConstant
     | ?p => constr:(Zneg p)
     end
   | _ =>
     match inv_gen_phi_pos rI add mul t with
       NotConstant => NotConstant
     | ?p => constr:(Zpos p)
     end
   end.

(* coefs = Z (abstract ring) *)
Module Zpol.

Definition ring_gen_correct
  R rO rI radd rmul rsub ropp req rSet req_th Rth :=
  @ring_correct R rO rI radd rmul rsub ropp req rSet req_th
                (Rth_ARth rSet req_th Rth)
                Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool
                (@gen_phiZ R rO rI radd rmul ropp)
                (gen_phiZ_morph rSet req_th Rth).

Definition ring_rw_gen_correct
  R rO rI radd rmul rsub ropp req rSet req_th Rth :=
  @Pphi_dev_ok   R rO rI radd rmul rsub ropp req rSet req_th
                 (Rth_ARth rSet req_th Rth)
                 Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool
                 (@gen_phiZ R rO rI radd rmul ropp)
                 (gen_phiZ_morph rSet req_th Rth).

Definition ring_gen_eq_correct R rO rI radd rmul rsub ropp Rth :=
  @ring_gen_correct
     R rO rI radd rmul rsub ropp (@eq R) (Eqsth R) (Eq_ext _ _ _) Rth.

Definition ring_rw_gen_eq_correct R rO rI radd rmul rsub ropp Rth :=
  @ring_rw_gen_correct
     R rO rI radd rmul rsub ropp (@eq R) (Eqsth R) (Eq_ext _ _ _) Rth.

End Zpol.

(* coefs = N (abstract semi-ring) *)
Module Npol.

Definition ring_gen_correct
  R rO rI radd rmul req rSet req_th SRth :=
  @ring_correct R rO rI radd rmul (SRsub radd) (@SRopp R) req rSet
                (SReqe_Reqe req_th)
                (SRth_ARth rSet SRth)
                N 0%N 1%N Nplus Nmult (SRsub Nplus) (@SRopp N) Neq_bool
                (@gen_phiN R rO rI radd rmul)
                (gen_phiN_morph rSet req_th SRth).

Definition ring_rw_gen_correct
  R rO rI radd rmul req rSet req_th SRth :=
  @Pphi_dev_ok   R rO rI radd rmul (SRsub radd) (@SRopp R) req rSet
                 (SReqe_Reqe req_th)
                 (SRth_ARth rSet SRth)
                 N 0%N 1%N Nplus Nmult (SRsub Nplus) (@SRopp N) Neq_bool
                 (@gen_phiN R rO rI radd rmul)
                 (gen_phiN_morph rSet req_th SRth).

Definition ring_gen_eq_correct R rO rI radd rmul SRth :=
  @ring_gen_correct
     R rO rI radd rmul (@eq R) (Eqsth R) (Eq_s_ext _ _) SRth.

Definition ring_rw_gen_eq_correct' R rO rI radd rmul SRth :=
  @ring_rw_gen_correct
     R rO rI radd rmul (@eq R) (Eqsth R) (Eq_s_ext _ _) SRth.

End Npol.


Ltac coerce_to_almost_ring set ext rspec :=
  match type of rspec with
  | ring_theory _ _ _ _ _ _ _ => constr:(Rth_ARth set ext rspec)
  | semi_ring_theory _ _ _ _ _ => constr:(SRth_ARth set rspec)
  | almost_ring_theory _ _ _ _ _ _ _ => rspec
  | _ => fail 1 "not a valid ring theory"
  end.

Ltac coerce_to_ring_ext ext :=
  match type of ext with
  | ring_eq_ext _ _ _ _ => ext
  | sring_eq_ext _ _ _ => constr:(SReqe_Reqe ext)
  | _ => fail 1 "not a valid ring_eq_ext theory"
  end.

Ltac abstract_ring_morphism set ext rspec :=
  match type of rspec with
  | ring_theory _ _ _ _ _ _ _ => constr:(gen_phiZ_morph set ext rspec)
  | semi_ring_theory _ _ _ _ _ => constr:(gen_phiN_morph set ext rspec)
  | almost_ring_theory _ _ _ _ _ _ _ =>
      fail 1 "an almost ring cannot be abstract"
  | _ => fail 1 "bad ring structure"
  end.

Ltac ring_elements set ext rspec rk :=
  let arth := coerce_to_almost_ring set ext rspec in
  let ext_r := coerce_to_ring_ext ext in
  let morph :=
    match rk with
    | Abstract => abstract_ring_morphism set ext rspec
    | @Computational ?reqb_ok =>
        match type of arth with
        | almost_ring_theory ?rO ?rI ?add ?mul ?sub ?opp _ =>
            constr:(IDmorph rO rI add mul sub opp set _ reqb_ok)
        | _ => fail 2 "ring anomaly"
        end
    | @Morphism ?m => m
    | _ => fail 1 "ill-formed ring kind"
    end in
  fun f => f arth ext_r morph.

(* Given a ring structure and the kind of morphism,
   returns 2 lemmas (one for ring, and one for ring_simplify). *)

Ltac ring_lemmas set ext rspec rk :=
  ring_elements set ext rspec rk
    ltac:(fun arth ext_r morph =>
      let lemma1 := constr:(ring_correct set ext_r arth morph) in
      let lemma2 := constr:(Pphi_dev_ok set ext_r arth morph) in
      fun f => f arth ext_r morph lemma1 lemma2).