summaryrefslogtreecommitdiff
path: root/contrib/romega/const_omega.ml
blob: 3b2a7d316e6d5a14ab5932abb8aa93f17178fac3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
(*************************************************************************

   PROJET RNRT Calife - 2001
   Author: Pierre Crégut - France Télécom R&D
   Licence : LGPL version 2.1

 *************************************************************************)

let module_refl_name = "ReflOmegaCore"
let module_refl_path = ["Coq"; "romega"; module_refl_name]

type result = 
   Kvar of string
 | Kapp of string * Term.constr list
 | Kimp of Term.constr * Term.constr
 | Kufo;;

let destructurate t =
  let c, args = Term.decompose_app t in
  let env = Global.env() in
  match Term.kind_of_term c, args with
    | Term.Const sp, args ->
	Kapp (Names.string_of_id
		(Nametab.id_of_global (Libnames.ConstRef sp)),
	      args)
    | Term.Construct csp , args ->
	Kapp (Names.string_of_id
		(Nametab.id_of_global (Libnames.ConstructRef csp)),
	      args)
    | Term.Ind isp, args ->
	Kapp (Names.string_of_id
		(Nametab.id_of_global (Libnames.IndRef isp)),
	      args)
    | Term.Var id,[] -> Kvar(Names.string_of_id id)
    | Term.Prod (Names.Anonymous,typ,body), [] -> Kimp(typ,body)
    | Term.Prod (Names.Name _,_,_),[] ->
	Util.error "Omega: Not a quantifier-free goal"
    | _ -> Kufo

exception Destruct

let dest_const_apply t = 
  let f,args = Term.decompose_app t in 
  let ref = 
  match Term.kind_of_term f with 
    | Term.Const sp         -> Libnames.ConstRef sp
    | Term.Construct csp -> Libnames.ConstructRef csp
    | Term.Ind isp       -> Libnames.IndRef isp
    | _ -> raise Destruct
  in  Nametab.id_of_global ref, args

let recognize_number t =
  let rec loop t =
    let f,l = dest_const_apply t in
    match Names.string_of_id f,l with
       "xI",[t] -> 1 + 2 * loop t
     | "xO",[t] -> 2 * loop t 
     | "xH",[] -> 1
     | _ -> failwith "not a number" in
  let f,l = dest_const_apply t in
    match Names.string_of_id f,l with
       "Zpos",[t] -> loop t | "Zneg",[t] -> - (loop t) | "Z0",[] -> 0
     | _ -> failwith "not a number";;


let logic_dir = ["Coq";"Logic";"Decidable"]

let coq_modules =
  Coqlib.init_modules @ [logic_dir] @ Coqlib.arith_modules @ Coqlib.zarith_base_modules
    @ [["Coq"; "omega"; "OmegaLemmas"]]
    @ [["Coq"; "Lists"; (if !Options.v7 then "PolyList" else "List")]]
    @ [module_refl_path]


let constant = Coqlib.gen_constant_in_modules "Omega" coq_modules

let coq_xH = lazy (constant "xH")
let coq_xO = lazy (constant "xO")
let coq_xI = lazy (constant "xI")
let coq_ZERO = lazy (constant "Z0")
let coq_POS = lazy (constant "Zpos")
let coq_NEG = lazy (constant "Zneg")
let coq_Z = lazy (constant "Z")
let coq_relation = lazy (constant  "comparison")
let coq_SUPERIEUR = lazy (constant "SUPERIEUR")
let coq_INFEEIEUR = lazy (constant "INFERIEUR")
let coq_EGAL = lazy (constant "EGAL")
let coq_Zplus = lazy (constant "Zplus")
let coq_Zmult = lazy (constant  "Zmult")
let coq_Zopp = lazy (constant "Zopp")

let coq_Zminus = lazy (constant "Zminus")
let coq_Zs = lazy (constant  "Zs")
let coq_Zgt = lazy (constant "Zgt")
let coq_Zle = lazy (constant "Zle")
let coq_inject_nat = lazy (constant  "inject_nat")

(* Peano *)
let coq_le = lazy(constant "le")
let coq_gt = lazy(constant "gt")

(* Integers *)
let coq_nat = lazy(constant "nat")
let coq_S = lazy(constant "S")
let coq_O = lazy(constant "O")
let coq_minus = lazy(constant "minus")

(* Logic *)
let coq_eq = lazy(constant  "eq")
let coq_refl_equal = lazy(constant  "refl_equal")
let coq_and = lazy(constant "and")
let coq_not = lazy(constant "not")
let coq_or = lazy(constant "or")
let coq_true = lazy(constant "true")
let coq_false = lazy(constant "false")
let coq_ex = lazy(constant "ex")
let coq_I = lazy(constant "I")

(* Lists *)
let coq_cons =  lazy (constant "cons")
let coq_nil =  lazy (constant "nil")

let coq_pcons = lazy (constant "Pcons")
let coq_pnil = lazy (constant "Pnil")

let coq_h_step = lazy (constant "h_step")
let coq_pair_step = lazy (constant  "pair_step")
let coq_p_left = lazy (constant  "P_LEFT")
let coq_p_right = lazy (constant  "P_RIGHT")
let coq_p_invert = lazy (constant  "P_INVERT")
let coq_p_step = lazy (constant  "P_STEP")
let coq_p_nop = lazy (constant  "P_NOP")


let coq_t_int = lazy (constant  "Tint")
let coq_t_plus = lazy (constant  "Tplus")
let coq_t_mult = lazy (constant  "Tmult")
let coq_t_opp = lazy (constant  "Topp")
let coq_t_minus = lazy (constant  "Tminus")
let coq_t_var = lazy (constant  "Tvar")

let coq_p_eq = lazy (constant  "EqTerm")
let coq_p_leq = lazy (constant  "LeqTerm")
let coq_p_geq = lazy (constant  "GeqTerm")
let coq_p_lt = lazy (constant  "LtTerm")
let coq_p_gt = lazy (constant  "GtTerm")
let coq_p_neq = lazy (constant  "NeqTerm")
let coq_p_true = lazy (constant  "TrueTerm")
let coq_p_false = lazy (constant  "FalseTerm")
let coq_p_not = lazy (constant  "Tnot")
let coq_p_or = lazy (constant  "Tor")
let coq_p_and = lazy (constant  "Tand")
let coq_p_imp = lazy (constant  "Timp")
let coq_p_prop = lazy (constant  "Tprop")

let coq_proposition = lazy (constant  "proposition")
let coq_interp_sequent = lazy (constant  "interp_goal_concl")
let coq_normalize_sequent = lazy (constant  "normalize_goal")
let coq_execute_sequent = lazy (constant  "execute_goal")
let coq_do_concl_to_hyp =  lazy (constant  "do_concl_to_hyp")
let coq_sequent_to_hyps = lazy (constant  "goal_to_hyps")
let coq_normalize_hyps_goal =
  lazy (constant  "normalize_hyps_goal")

(* Constructors for shuffle tactic *)
let coq_t_fusion =  lazy (constant  "t_fusion")
let coq_f_equal =  lazy (constant  "F_equal")
let coq_f_cancel =  lazy (constant  "F_cancel")
let coq_f_left =  lazy (constant  "F_left")
let coq_f_right =  lazy (constant  "F_right")

(* Constructors for reordering tactics *)
let coq_step = lazy (constant  "step")
let coq_c_do_both = lazy (constant  "C_DO_BOTH")
let coq_c_do_left = lazy (constant  "C_LEFT")
let coq_c_do_right = lazy (constant  "C_RIGHT")
let coq_c_do_seq = lazy (constant  "C_SEQ")
let coq_c_nop = lazy (constant  "C_NOP")
let coq_c_opp_plus = lazy (constant  "C_OPP_PLUS")
let coq_c_opp_opp = lazy (constant  "C_OPP_OPP")
let coq_c_opp_mult_r = lazy (constant  "C_OPP_MULT_R")
let coq_c_opp_one = lazy (constant  "C_OPP_ONE")
let coq_c_reduce = lazy (constant  "C_REDUCE")
let coq_c_mult_plus_distr = lazy (constant  "C_MULT_PLUS_DISTR")
let coq_c_opp_left = lazy (constant  "C_MULT_OPP_LEFT")
let coq_c_mult_assoc_r = lazy (constant  "C_MULT_ASSOC_R")
let coq_c_plus_assoc_r = lazy (constant  "C_PLUS_ASSOC_R")
let coq_c_plus_assoc_l = lazy (constant  "C_PLUS_ASSOC_L")
let coq_c_plus_permute = lazy (constant  "C_PLUS_PERMUTE")
let coq_c_plus_sym = lazy (constant  "C_PLUS_SYM")
let coq_c_red0 = lazy (constant  "C_RED0")
let coq_c_red1 = lazy (constant  "C_RED1")
let coq_c_red2 = lazy (constant  "C_RED2")
let coq_c_red3 = lazy (constant  "C_RED3")
let coq_c_red4 = lazy (constant  "C_RED4")
let coq_c_red5 = lazy (constant  "C_RED5")
let coq_c_red6 = lazy (constant  "C_RED6")
let coq_c_mult_opp_left = lazy (constant  "C_MULT_OPP_LEFT")
let coq_c_mult_assoc_reduced = 
  lazy (constant  "C_MULT_ASSOC_REDUCED")
let coq_c_minus = lazy (constant  "C_MINUS")
let coq_c_mult_sym = lazy (constant  "C_MULT_SYM")

let coq_s_constant_not_nul = lazy (constant  "O_CONSTANT_NOT_NUL")
let coq_s_constant_neg = lazy (constant  "O_CONSTANT_NEG")
let coq_s_div_approx = lazy (constant  "O_DIV_APPROX")
let coq_s_not_exact_divide = lazy (constant  "O_NOT_EXACT_DIVIDE")
let coq_s_exact_divide = lazy (constant  "O_EXACT_DIVIDE")
let coq_s_sum = lazy (constant  "O_SUM")
let coq_s_state = lazy (constant  "O_STATE")
let coq_s_contradiction = lazy (constant  "O_CONTRADICTION")
let coq_s_merge_eq = lazy (constant  "O_MERGE_EQ")
let coq_s_split_ineq =lazy (constant  "O_SPLIT_INEQ")
let coq_s_constant_nul =lazy (constant  "O_CONSTANT_NUL")
let coq_s_negate_contradict =lazy (constant  "O_NEGATE_CONTRADICT")
let coq_s_negate_contradict_inv =lazy (constant  "O_NEGATE_CONTRADICT_INV")

(* construction for the [extract_hyp] tactic *)
let coq_direction = lazy  (constant  "direction")
let coq_d_left = lazy  (constant  "D_left")
let coq_d_right = lazy  (constant  "D_right")
let coq_d_mono = lazy  (constant  "D_mono")

let coq_e_split = lazy  (constant  "E_SPLIT")
let coq_e_extract = lazy  (constant  "E_EXTRACT")
let coq_e_solve = lazy  (constant  "E_SOLVE")

let coq_decompose_solve_valid = 
  lazy (constant   "decompose_solve_valid")
let coq_do_reduce_lhyps = lazy (constant   "do_reduce_lhyps")
let coq_do_omega = lazy (constant  "do_omega")

(**
let constant dir s =
   try
     Libnames.constr_of_reference 
       (Nametab.absolute_reference
	  (Libnames.make_path
             (Names.make_dirpath (List.map Names.id_of_string (List.rev dir)))
             (Names.id_of_string s)))
   with e -> print_endline (String.concat "." dir); print_endline s;
             raise e

let path_fast_integer = ["Coq"; "ZArith"; "fast_integer"]
let path_zarith_aux = ["Coq"; "ZArith"; "zarith_aux"]
let path_logic = ["Coq"; "Init";"Logic"]
let path_datatypes = ["Coq"; "Init";"Datatypes"]
let path_peano = ["Coq"; "Init"; "Peano"]
let path_list = ["Coq"; "Lists"; "PolyList"]

let coq_xH = lazy (constant path_fast_integer "xH")
let coq_xO = lazy (constant path_fast_integer "xO")
let coq_xI = lazy (constant path_fast_integer "xI")
let coq_ZERO = lazy (constant path_fast_integer "ZERO")
let coq_POS = lazy (constant path_fast_integer "POS")
let coq_NEG = lazy (constant path_fast_integer "NEG")
let coq_Z = lazy (constant path_fast_integer "Z")
let coq_relation = lazy (constant path_fast_integer "relation")
let coq_SUPERIEUR = lazy (constant path_fast_integer "SUPERIEUR")
let coq_INFEEIEUR = lazy (constant path_fast_integer "INFERIEUR")
let coq_EGAL = lazy (constant path_fast_integer "EGAL")
let coq_Zplus = lazy (constant path_fast_integer "Zplus")
let coq_Zmult = lazy (constant path_fast_integer "Zmult")
let coq_Zopp = lazy (constant path_fast_integer "Zopp")

(* auxiliaires zarith *)
let coq_Zminus = lazy (constant path_zarith_aux "Zminus")
let coq_Zs = lazy (constant path_zarith_aux "Zs")
let coq_Zgt = lazy (constant path_zarith_aux "Zgt")
let coq_Zle = lazy (constant path_zarith_aux "Zle")
let coq_inject_nat = lazy (constant path_zarith_aux "inject_nat")

(* Peano *)
let coq_le = lazy(constant path_peano "le")
let coq_gt = lazy(constant path_peano "gt")

(* Integers *)
let coq_nat = lazy(constant path_datatypes "nat")
let coq_S = lazy(constant path_datatypes "S")
let coq_O = lazy(constant path_datatypes "O")

(* Minus *)
let coq_minus = lazy(constant ["Arith"; "Minus"] "minus")

(* Logic *)
let coq_eq = lazy(constant path_logic "eq")
let coq_refl_equal = lazy(constant path_logic "refl_equal")
let coq_and = lazy(constant path_logic "and")
let coq_not = lazy(constant path_logic "not")
let coq_or = lazy(constant path_logic "or")
let coq_true = lazy(constant path_logic "true")
let coq_false = lazy(constant path_logic "false")
let coq_ex = lazy(constant path_logic "ex")
let coq_I = lazy(constant path_logic "I")

(* Lists *)
let coq_cons =  lazy (constant path_list  "cons")
let coq_nil =  lazy (constant path_list "nil")

let coq_pcons = lazy (constant module_refl_path "Pcons")
let coq_pnil = lazy (constant module_refl_path "Pnil")

let coq_h_step = lazy (constant module_refl_path "h_step")
let coq_pair_step = lazy (constant module_refl_path "pair_step")
let coq_p_left = lazy (constant module_refl_path "P_LEFT")
let coq_p_right = lazy (constant module_refl_path "P_RIGHT")
let coq_p_invert = lazy (constant module_refl_path "P_INVERT")
let coq_p_step = lazy (constant module_refl_path "P_STEP")
let coq_p_nop = lazy (constant module_refl_path "P_NOP")


let coq_t_int = lazy (constant module_refl_path "Tint")
let coq_t_plus = lazy (constant module_refl_path "Tplus")
let coq_t_mult = lazy (constant module_refl_path "Tmult")
let coq_t_opp = lazy (constant module_refl_path "Topp")
let coq_t_minus = lazy (constant module_refl_path "Tminus")
let coq_t_var = lazy (constant module_refl_path "Tvar")

let coq_p_eq = lazy (constant module_refl_path "EqTerm")
let coq_p_leq = lazy (constant module_refl_path "LeqTerm")
let coq_p_geq = lazy (constant module_refl_path "GeqTerm")
let coq_p_lt = lazy (constant module_refl_path "LtTerm")
let coq_p_gt = lazy (constant module_refl_path "GtTerm")
let coq_p_neq = lazy (constant module_refl_path "NeqTerm")
let coq_p_true = lazy (constant module_refl_path "TrueTerm")
let coq_p_false = lazy (constant module_refl_path "FalseTerm")
let coq_p_not = lazy (constant module_refl_path "Tnot")
let coq_p_or = lazy (constant module_refl_path "Tor")
let coq_p_and = lazy (constant module_refl_path "Tand")
let coq_p_imp = lazy (constant module_refl_path "Timp")
let coq_p_prop = lazy (constant module_refl_path "Tprop")

let coq_proposition = lazy (constant module_refl_path "proposition")
let coq_interp_sequent = lazy (constant module_refl_path "interp_goal_concl")
let coq_normalize_sequent = lazy (constant module_refl_path "normalize_goal")
let coq_execute_sequent = lazy (constant module_refl_path "execute_goal")
let coq_do_concl_to_hyp =  lazy (constant module_refl_path "do_concl_to_hyp")
let coq_sequent_to_hyps = lazy (constant module_refl_path "goal_to_hyps")
let coq_normalize_hyps_goal =
  lazy (constant module_refl_path "normalize_hyps_goal")

(* Constructors for shuffle tactic *)
let coq_t_fusion =  lazy (constant module_refl_path "t_fusion")
let coq_f_equal =  lazy (constant module_refl_path "F_equal")
let coq_f_cancel =  lazy (constant module_refl_path "F_cancel")
let coq_f_left =  lazy (constant module_refl_path "F_left")
let coq_f_right =  lazy (constant module_refl_path "F_right")

(* Constructors for reordering tactics *)
let coq_step = lazy (constant module_refl_path "step")
let coq_c_do_both = lazy (constant module_refl_path "C_DO_BOTH")
let coq_c_do_left = lazy (constant module_refl_path "C_LEFT")
let coq_c_do_right = lazy (constant module_refl_path "C_RIGHT")
let coq_c_do_seq = lazy (constant module_refl_path "C_SEQ")
let coq_c_nop = lazy (constant module_refl_path "C_NOP")
let coq_c_opp_plus = lazy (constant module_refl_path "C_OPP_PLUS")
let coq_c_opp_opp = lazy (constant module_refl_path "C_OPP_OPP")
let coq_c_opp_mult_r = lazy (constant module_refl_path "C_OPP_MULT_R")
let coq_c_opp_one = lazy (constant module_refl_path "C_OPP_ONE")
let coq_c_reduce = lazy (constant module_refl_path "C_REDUCE")
let coq_c_mult_plus_distr = lazy (constant module_refl_path "C_MULT_PLUS_DISTR")
let coq_c_opp_left = lazy (constant module_refl_path "C_MULT_OPP_LEFT")
let coq_c_mult_assoc_r = lazy (constant module_refl_path "C_MULT_ASSOC_R")
let coq_c_plus_assoc_r = lazy (constant module_refl_path "C_PLUS_ASSOC_R")
let coq_c_plus_assoc_l = lazy (constant module_refl_path "C_PLUS_ASSOC_L")
let coq_c_plus_permute = lazy (constant module_refl_path "C_PLUS_PERMUTE")
let coq_c_plus_sym = lazy (constant module_refl_path "C_PLUS_SYM")
let coq_c_red0 = lazy (constant module_refl_path "C_RED0")
let coq_c_red1 = lazy (constant module_refl_path "C_RED1")
let coq_c_red2 = lazy (constant module_refl_path "C_RED2")
let coq_c_red3 = lazy (constant module_refl_path "C_RED3")
let coq_c_red4 = lazy (constant module_refl_path "C_RED4")
let coq_c_red5 = lazy (constant module_refl_path "C_RED5")
let coq_c_red6 = lazy (constant module_refl_path "C_RED6")
let coq_c_mult_opp_left = lazy (constant module_refl_path "C_MULT_OPP_LEFT")
let coq_c_mult_assoc_reduced = 
  lazy (constant module_refl_path "C_MULT_ASSOC_REDUCED")
let coq_c_minus = lazy (constant module_refl_path "C_MINUS")
let coq_c_mult_sym = lazy (constant module_refl_path "C_MULT_SYM")

let coq_s_constant_not_nul = lazy (constant module_refl_path "O_CONSTANT_NOT_NUL")
let coq_s_constant_neg = lazy (constant module_refl_path "O_CONSTANT_NEG")
let coq_s_div_approx = lazy (constant module_refl_path "O_DIV_APPROX")
let coq_s_not_exact_divide = lazy (constant module_refl_path "O_NOT_EXACT_DIVIDE")
let coq_s_exact_divide = lazy (constant module_refl_path "O_EXACT_DIVIDE")
let coq_s_sum = lazy (constant module_refl_path "O_SUM")
let coq_s_state = lazy (constant module_refl_path "O_STATE")
let coq_s_contradiction = lazy (constant module_refl_path "O_CONTRADICTION")
let coq_s_merge_eq = lazy (constant module_refl_path "O_MERGE_EQ")
let coq_s_split_ineq =lazy (constant module_refl_path "O_SPLIT_INEQ")
let coq_s_constant_nul =lazy (constant module_refl_path "O_CONSTANT_NUL")
let coq_s_negate_contradict =lazy (constant module_refl_path "O_NEGATE_CONTRADICT")
let coq_s_negate_contradict_inv =lazy (constant module_refl_path "O_NEGATE_CONTRADICT_INV")

(* construction for the [extract_hyp] tactic *)
let coq_direction = lazy  (constant module_refl_path "direction")
let coq_d_left = lazy  (constant module_refl_path "D_left")
let coq_d_right = lazy  (constant module_refl_path "D_right")
let coq_d_mono = lazy  (constant module_refl_path "D_mono")

let coq_e_split = lazy  (constant module_refl_path "E_SPLIT")
let coq_e_extract = lazy  (constant module_refl_path "E_EXTRACT")
let coq_e_solve = lazy  (constant module_refl_path "E_SOLVE")

let coq_decompose_solve_valid = 
  lazy (constant  module_refl_path "decompose_solve_valid")
let coq_do_reduce_lhyps = lazy (constant  module_refl_path "do_reduce_lhyps")
let coq_do_omega = lazy (constant module_refl_path "do_omega")

*)
(* \subsection{Construction d'expressions} *)


let mk_var v = Term.mkVar (Names.id_of_string v)
let mk_plus t1 t2 = Term.mkApp (Lazy.force coq_Zplus,[|  t1; t2 |])
let mk_times t1 t2 = Term.mkApp (Lazy.force coq_Zmult, [| t1; t2 |])
let mk_minus t1 t2 = Term.mkApp (Lazy.force coq_Zminus, [| t1;t2 |])
let mk_eq t1 t2 = Term.mkApp (Lazy.force coq_eq, [| Lazy.force coq_Z; t1; t2 |])
let mk_le t1 t2 = Term.mkApp (Lazy.force coq_Zle, [|t1; t2 |])
let mk_gt t1 t2 = Term.mkApp (Lazy.force coq_Zgt, [|t1; t2 |])
let mk_inv t = Term.mkApp (Lazy.force coq_Zopp, [|t |])
let mk_and t1 t2 =  Term.mkApp (Lazy.force coq_and, [|t1; t2 |])
let mk_or t1 t2 =  Term.mkApp (Lazy.force coq_or, [|t1; t2 |])
let mk_not t = Term.mkApp (Lazy.force coq_not, [|t |])
let mk_eq_rel t1 t2 = Term.mkApp (Lazy.force coq_eq, [|
				Lazy.force coq_relation; t1; t2 |])
let mk_inj t = Term.mkApp (Lazy.force coq_inject_nat, [|t |])


let do_left t = 
  if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
  else Term.mkApp (Lazy.force coq_c_do_left, [|t |] )

let do_right t = 
  if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
  else Term.mkApp (Lazy.force coq_c_do_right, [|t |])

let do_both t1 t2 = 
  if t1 = Lazy.force coq_c_nop then do_right t2
  else if t2 = Lazy.force coq_c_nop then do_left t1
  else Term.mkApp (Lazy.force coq_c_do_both , [|t1; t2 |])

let do_seq t1 t2 =
  if t1 = Lazy.force coq_c_nop then t2
  else if t2 = Lazy.force coq_c_nop then t1
  else Term.mkApp (Lazy.force coq_c_do_seq, [|t1; t2 |])
  
let rec do_list = function
  | [] -> Lazy.force coq_c_nop
  | [x] -> x
  | (x::l) -> do_seq x (do_list l)

				 
let mk_integer n =
  let rec loop n = 
    if n=1 then Lazy.force coq_xH else 
      Term.mkApp ((if n mod 2 = 0 then Lazy.force coq_xO else Lazy.force coq_xI),
		 [| loop (n/2) |]) in
    
    if n = 0 then Lazy.force coq_ZERO 
    else Term.mkApp ((if n > 0 then Lazy.force coq_POS else Lazy.force coq_NEG),
		     [| loop (abs n) |])

let mk_Z = mk_integer

let rec mk_nat = function
  | 0 -> Lazy.force coq_O
  | n -> Term.mkApp (Lazy.force coq_S, [| mk_nat (n-1) |])

let mk_list typ l =
  let rec loop = function
    | [] ->
	Term.mkApp (Lazy.force coq_nil, [|typ|])
    | (step :: l) -> 
	Term.mkApp (Lazy.force coq_cons, [|typ; step; loop l |]) in
  loop l

let mk_plist l =
  let rec loop = function
    | [] ->
	(Lazy.force coq_pnil)
    | (step :: l) -> 
	Term.mkApp (Lazy.force coq_pcons, [| step; loop l |]) in
  loop l


let mk_shuffle_list l = mk_list (Lazy.force coq_t_fusion) l