summaryrefslogtreecommitdiff
path: root/contrib/correctness/examples/exp_int.v
blob: 044263ca3f2d4b1ea34a19a08ebfedf853e7bdf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* Certification of Imperative Programs / Jean-Christophe Filliâtre *)

(* $Id: exp_int.v 1577 2001-04-11 07:56:19Z filliatr $ *)

(* Efficient computation of X^n using
 * 
 *    X^(2n)   =     (X^n) ^ 2
 *    X^(2n+1) = X . (X^n) ^ 2
 *
 * Proofs of both fonctional and imperative programs.
 *)

Require Zpower.
Require Zcomplements.

Require Correctness.
Require ZArithRing.
Require Omega.

Definition Zdouble := [n:Z]`2*n`.

Definition Zsquare := [n:Z](Zmult n n).

(* Some auxiliary lemmas about Zdiv2 are necessary *)

Lemma Zdiv2_ge_0 : (x:Z) `x >= 0` -> `(Zdiv2 x) >= 0`.
Proof.
Destruct x; Auto with zarith.
Destruct p; Auto with zarith.
Simpl. Omega.
Intros. (Absurd `(NEG p) >= 0`; Red; Auto with zarith).
Save.

Lemma Zdiv2_lt : (x:Z) `x > 0` -> `(Zdiv2 x) < x`.
Proof.
Destruct x.
Intro. Absurd `0 > 0`; [ Omega | Assumption ].
Destruct p; Auto with zarith.

Simpl.
Intro p0.
Replace (POS (xI p0)) with `2*(POS p0)+1`.
Omega.
Simpl. Auto with zarith.

Intro p0.
Simpl.
Replace (POS (xO p0)) with `2*(POS p0)`.
Omega.
Simpl. Auto with zarith.

Simpl. Omega.

Intros. 
Absurd `(NEG p) > 0`; Red; Auto with zarith.
Elim p; Auto with zarith.
Omega.
Save.

(* A property of Zpower:  x^(2*n) = (x^2)^n *)

Lemma Zpower_2n : 
  (x,n:Z)`n >= 0` -> (Zpower x (Zdouble n))=(Zpower (Zsquare x) n).
Proof.
Unfold Zdouble.
Intros x n Hn.
Replace `2*n` with `n+n`.
Rewrite Zpower_exp.
Pattern n.
Apply natlike_ind.

Simpl. Auto with zarith.

Intros.
Unfold Zs.
Rewrite Zpower_exp.
Rewrite Zpower_exp.
Replace (Zpower x `1`) with x.
Replace (Zpower (Zsquare x) `1`) with (Zsquare x).
Rewrite <- H0.
Unfold Zsquare.
Ring.

Unfold Zpower; Unfold Zpower_pos; Simpl. Omega.

Unfold Zpower; Unfold Zpower_pos; Simpl. Omega.

Omega.
Omega.
Omega.
Omega.
Omega.
Assumption.
Assumption.
Omega.
Save.


(* The program *)

Correctness i_exp
  fun (x:Z)(n:Z) ->
    { `n >= 0` }
   (let y = ref 1 in
    let m = ref x in
    let e = ref n in
    begin
      while !e > 0 do
        { invariant (Zpower x n)=(Zmult y (Zpower m e)) /\ `e>=0` as Inv
          variant e }
        (if not (Zeven_odd_bool !e) then y := (Zmult !y !m))
          { (Zpower x n) = (Zmult y (Zpower m (Zdouble (Zdiv2 e)))) as Q };
        m := (Zsquare !m);
        e := (Zdiv2 !e)
      done;
      !y
    end)
    { result=(Zpower x n) }
.
Proof.
(* Zodd *)
Decompose [and] Inv.
Rewrite (Zodd_div2 e0 H0 Test1) in H. Rewrite H.
Rewrite Zpower_exp.
Unfold Zdouble.
Replace (Zpower m0 `1`) with m0.
Ring.
Unfold Zpower; Unfold Zpower_pos; Simpl; Ring.
Generalize (Zdiv2_ge_0 e0); Omega.
Omega.
(* Zeven *)
Decompose [and] Inv.
Rewrite (Zeven_div2 e0 Test1) in H. Rewrite H.
Auto with zarith.
Split.
(* Zwf *)
Unfold Zwf.
Repeat Split.
Generalize (Zdiv2_ge_0 e0); Omega.
Omega.
Exact (Zdiv2_lt e0 Test2).
(* invariant *)
Split.
Rewrite Q. Unfold Zdouble. Unfold Zsquare.
Rewrite (Zpower_2n).
Trivial.
Generalize (Zdiv2_ge_0 e0); Omega.
Generalize (Zdiv2_ge_0 e0); Omega.
Split; [ Ring | Assumption ].
(* exit fo loop *)
Decompose [and] Inv.
Cut `e0 = 0`. Intro.
Rewrite H1. Rewrite H.
Simpl; Ring.
Omega.
Save.


(* Recursive version. *)

Correctness r_exp
  let rec exp (x:Z) (n:Z) : Z { variant n } =
    { `n >= 0` }
    (if n = 0 then
       1
     else
       let y = (exp x (Zdiv2 n)) in
       (if (Zeven_odd_bool n) then
       	  (Zmult y y)
        else
          (Zmult x (Zmult y y))) { result=(Zpower x n) as Q }
    ) 
    { result=(Zpower x n) }
.
Proof.
Rewrite Test2. Auto with zarith.
(* w.f. *)
Unfold Zwf.
Repeat Split.
Generalize (Zdiv2_ge_0 n0) ; Omega.
Omega.
Generalize (Zdiv2_lt n0) ; Omega.
(* rec. call *)
Generalize (Zdiv2_ge_0 n0) ; Omega.
(* invariant: case even *)
Generalize (Zeven_div2 n0 Test1).
Intro Heq. Rewrite Heq.
Rewrite Post4.
Replace `2*(Zdiv2 n0)` with `(Zdiv2 n0)+(Zdiv2 n0)`.
Rewrite Zpower_exp.
Auto with zarith.
Generalize (Zdiv2_ge_0 n0) ; Omega.
Generalize (Zdiv2_ge_0 n0) ; Omega.
Omega.
(* invariant: cas odd *)
Generalize (Zodd_div2 n0 Pre1 Test1).
Intro Heq. Rewrite Heq.
Rewrite Post4.
Rewrite Zpower_exp.
Replace `2*(Zdiv2 n0)` with `(Zdiv2 n0)+(Zdiv2 n0)`.
Rewrite Zpower_exp.
Replace `(Zpower x0 1)` with x0.
Ring.
Unfold Zpower; Unfold Zpower_pos; Simpl. Omega.
Generalize (Zdiv2_ge_0 n0) ; Omega.
Generalize (Zdiv2_ge_0 n0) ; Omega.
Omega.
Generalize (Zdiv2_ge_0 n0) ; Omega.
Omega.
Save.