1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* Library about sorted (sub-)arrays / Nicolas Magaud, July 1998 *)
(* $Id: Sorted.v 5920 2004-07-16 20:01:26Z herbelin $ *)
Require Export Arrays.
Require Import ArrayPermut.
Require Import ZArithRing.
Require Import Omega.
Open Local Scope Z_scope.
Set Implicit Arguments.
(* Definition *)
Definition sorted_array (N:Z) (A:array N Z) (deb fin:Z) :=
deb <= fin -> forall x:Z, x >= deb -> x < fin -> #A [x] <= #A [x + 1].
(* Elements of a sorted sub-array are in increasing order *)
(* one element and the next one *)
Lemma sorted_elements_1 :
forall (N:Z) (A:array N Z) (n m:Z),
sorted_array A n m ->
forall k:Z,
k >= n -> forall i:Z, 0 <= i -> k + i <= m -> #A [k] <= #A [k + i].
Proof.
intros N A n m H_sorted k H_k i H_i.
pattern i in |- *. apply natlike_ind.
intro.
replace (k + 0) with k; omega. (*** Ring `k+0` => BUG ***)
intros.
apply Zle_trans with (m := #A [k + x]).
apply H0; omega.
unfold Zsucc in |- *.
replace (k + (x + 1)) with (k + x + 1).
unfold sorted_array in H_sorted.
apply H_sorted; omega.
omega.
assumption.
Qed.
(* one element and any of the following *)
Lemma sorted_elements :
forall (N:Z) (A:array N Z) (n m k l:Z),
sorted_array A n m ->
k >= n -> l < N -> k <= l -> l <= m -> #A [k] <= #A [l].
Proof.
intros.
replace l with (k + (l - k)).
apply sorted_elements_1 with (n := n) (m := m);
[ assumption | omega | omega | omega ].
omega.
Qed.
Hint Resolve sorted_elements: datatypes v62.
(* A sub-array of a sorted array is sorted *)
Lemma sub_sorted_array :
forall (N:Z) (A:array N Z) (deb fin i j:Z),
sorted_array A deb fin ->
i >= deb -> j <= fin -> i <= j -> sorted_array A i j.
Proof.
unfold sorted_array in |- *.
intros.
apply H; omega.
Qed.
Hint Resolve sub_sorted_array: datatypes v62.
(* Extension on the left of the property of being sorted *)
Lemma left_extension :
forall (N:Z) (A:array N Z) (i j:Z),
i > 0 ->
j < N ->
sorted_array A i j -> #A [i - 1] <= #A [i] -> sorted_array A (i - 1) j.
Proof.
intros; unfold sorted_array in |- *; intros.
elim (Z_ge_lt_dec x i). (* (`x >= i`) + (`x < i`) *)
intro Hcut.
apply H1; omega.
intro Hcut.
replace x with (i - 1).
replace (i - 1 + 1) with i; [ assumption | omega ].
omega.
Qed.
(* Extension on the right *)
Lemma right_extension :
forall (N:Z) (A:array N Z) (i j:Z),
i >= 0 ->
j < N - 1 ->
sorted_array A i j -> #A [j] <= #A [j + 1] -> sorted_array A i (j + 1).
Proof.
intros; unfold sorted_array in |- *; intros.
elim (Z_lt_ge_dec x j).
intro Hcut.
apply H1; omega.
intro HCut.
replace x with j; [ assumption | omega ].
Qed.
(* Substitution of the leftmost value by a smaller value *)
Lemma left_substitution :
forall (N:Z) (A:array N Z) (i j v:Z),
i >= 0 ->
j < N ->
sorted_array A i j -> v <= #A [i] -> sorted_array (store A i v) i j.
Proof.
intros N A i j v H_i H_j H_sorted H_v.
unfold sorted_array in |- *; intros.
cut (x = i \/ x > i).
intro Hcut; elim Hcut; clear Hcut; intro.
rewrite H2.
rewrite store_def_1; try omega.
rewrite store_def_2; try omega.
apply Zle_trans with (m := #A [i]); [ assumption | apply H_sorted; omega ].
rewrite store_def_2; try omega.
rewrite store_def_2; try omega.
apply H_sorted; omega.
omega.
Qed.
(* Substitution of the rightmost value by a larger value *)
Lemma right_substitution :
forall (N:Z) (A:array N Z) (i j v:Z),
i >= 0 ->
j < N ->
sorted_array A i j -> #A [j] <= v -> sorted_array (store A j v) i j.
Proof.
intros N A i j v H_i H_j H_sorted H_v.
unfold sorted_array in |- *; intros.
cut (x = j - 1 \/ x < j - 1).
intro Hcut; elim Hcut; clear Hcut; intro.
rewrite H2.
replace (j - 1 + 1) with j; [ idtac | omega ]. (*** Ring `j-1+1`. => BUG ***)
rewrite store_def_2; try omega.
rewrite store_def_1; try omega.
apply Zle_trans with (m := #A [j]).
apply sorted_elements with (n := i) (m := j); try omega; assumption.
assumption.
rewrite store_def_2; try omega.
rewrite store_def_2; try omega.
apply H_sorted; omega.
omega.
Qed.
(* Affectation outside of the sorted region *)
Lemma no_effect :
forall (N:Z) (A:array N Z) (i j k v:Z),
i >= 0 ->
j < N ->
sorted_array A i j ->
0 <= k < i \/ j < k < N -> sorted_array (store A k v) i j.
Proof.
intros.
unfold sorted_array in |- *; intros.
rewrite store_def_2; try omega.
rewrite store_def_2; try omega.
apply H1; assumption.
Qed.
Lemma sorted_array_id :
forall (N:Z) (t1 t2:array N Z) (g d:Z),
sorted_array t1 g d -> array_id t1 t2 g d -> sorted_array t2 g d.
Proof.
intros N t1 t2 g d Hsorted Hid.
unfold array_id in Hid.
unfold sorted_array in Hsorted. unfold sorted_array in |- *.
intros Hgd x H1x H2x.
rewrite <- (Hid x); [ idtac | omega ].
rewrite <- (Hid (x + 1)); [ idtac | omega ].
apply Hsorted; assumption.
Qed.
|