1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open CErrors
open Util
open Names
open Cic
open Term
open Declarations
open Environ
open Reduction
open Inductive
open Modops
(*i*)
(* This local type is used to subtype a constant with a constructor or
an inductive type. It can also be useful to allow reorderings in
inductive types *)
type namedobject =
| Constant of constant_body
| IndType of inductive * mutual_inductive_body
| IndConstr of constructor * mutual_inductive_body
type namedmodule =
| Module of module_body
| Modtype of module_type_body
(* adds above information about one mutual inductive: all types and
constructors *)
let add_mib_nameobjects mp l mib map =
let ind = MutInd.make2 mp l in
let add_mip_nameobjects j oib map =
let ip = (ind,j) in
let map =
Array.fold_right_i
(fun i id map ->
Label.Map.add (Label.of_id id) (IndConstr((ip,i+1), mib)) map)
oib.mind_consnames
map
in
Label.Map.add (Label.of_id oib.mind_typename) (IndType (ip, mib)) map
in
Array.fold_right_i add_mip_nameobjects mib.mind_packets map
(* creates (namedobject/namedmodule) map for the whole signature *)
type labmap = { objs : namedobject Label.Map.t; mods : namedmodule Label.Map.t }
let empty_labmap = { objs = Label.Map.empty; mods = Label.Map.empty }
let get_obj mp map l =
try Label.Map.find l map.objs
with Not_found -> error_no_such_label_sub l mp
let get_mod mp map l =
try Label.Map.find l map.mods
with Not_found -> error_no_such_label_sub l mp
let make_labmap mp list =
let add_one (l,e) map =
match e with
| SFBconst cb -> { map with objs = Label.Map.add l (Constant cb) map.objs }
| SFBmind mib -> { map with objs = add_mib_nameobjects mp l mib map.objs }
| SFBmodule mb -> { map with mods = Label.Map.add l (Module mb) map.mods }
| SFBmodtype mtb -> { map with mods = Label.Map.add l (Modtype mtb) map.mods }
in
List.fold_right add_one list empty_labmap
let check_conv_error error f env a1 a2 =
try
f env a1 a2
with
NotConvertible -> error ()
(* for now we do not allow reorderings *)
let check_inductive env mp1 l info1 mib2 spec2 subst1 subst2=
let kn = MutInd.make2 mp1 l in
let error () = error_not_match l spec2 in
let check_conv f = check_conv_error error f in
let mib1 =
match info1 with
| IndType ((_,0), mib) -> mib
| _ -> error ()
in
let mib2 = subst_mind subst2 mib2 in
let check eq f = if not (eq (f mib1) (f mib2)) then error () in
let bool_equal (x : bool) (y : bool) = x = y in
let u =
check bool_equal (fun x -> x.mind_polymorphic);
if mib1.mind_polymorphic then (
check Univ.Instance.equal (fun x -> Univ.UContext.instance x.mind_universes);
Univ.UContext.instance mib1.mind_universes)
else Univ.Instance.empty
in
let eq_projection_body p1 p2 =
let check eq f = if not (eq (f p1) (f p2)) then error () in
check MutInd.equal (fun x -> x.proj_ind);
check (==) (fun x -> x.proj_npars);
check (==) (fun x -> x.proj_arg);
check (eq_constr) (fun x -> x.proj_type);
check (eq_constr) (fun x -> fst x.proj_eta);
check (eq_constr) (fun x -> snd x.proj_eta);
check (eq_constr) (fun x -> x.proj_body); true
in
let check_inductive_type env t1 t2 =
(* Due to sort-polymorphism in inductive types, the conclusions of
t1 and t2, if in Type, are generated as the least upper bounds
of the types of the constructors.
By monotonicity of the infered l.u.b. wrt subtyping (i.e. if X:U
|- T(X):s and |- M:U' and U'<=U then infer_type(T(M))<=s), each
universe in the conclusion of t1 has an bounding universe in
the conclusion of t2, so that we don't need to check the
subtyping of the conclusions of t1 and t2.
Even if we'd like to recheck it, the inference of constraints
is not designed to deal with algebraic constraints of the form
max-univ(u1..un) <= max-univ(u'1..u'n), so that it is not easy
to recheck it (in short, we would need the actual graph of
constraints as input while type checking is currently designed
to output a set of constraints instead) *)
(* So we cheat and replace the subtyping problem on algebraic
constraints of the form max-univ(u1..un) <= max-univ(u'1..u'n)
(that we know are necessary true) by trivial constraints that
the constraint generator knows how to deal with *)
let (ctx1,s1) = dest_arity env t1 in
let (ctx2,s2) = dest_arity env t2 in
let s1,s2 =
match s1, s2 with
| Type _, Type _ -> (* shortcut here *) Prop Null, Prop Null
| (Prop _, Type _) | (Type _,Prop _) -> error ()
| _ -> (s1, s2) in
check_conv conv_leq env
(mkArity (ctx1,s1)) (mkArity (ctx2,s2))
in
let check_packet p1 p2 =
let check eq f = if not (eq (f p1) (f p2)) then error () in
check
(fun a1 a2 -> Array.equal Id.equal a1 a2)
(fun p -> p.mind_consnames);
check Id.equal (fun p -> p.mind_typename);
(* nf_lc later *)
(* nf_arity later *)
(* user_lc ignored *)
(* user_arity ignored *)
check Int.equal (fun p -> p.mind_nrealargs);
(* kelim ignored *)
(* listrec ignored *)
(* finite done *)
(* nparams done *)
(* params_ctxt done because part of the inductive types *)
(* Don't check the sort of the type if polymorphic *)
check_inductive_type env
(type_of_inductive env ((mib1,p1),u)) (type_of_inductive env ((mib2,p2),u))
in
let check_cons_types i p1 p2 =
Array.iter2 (check_conv conv env)
(arities_of_specif (kn,u) (mib1,p1))
(arities_of_specif (kn,u) (mib2,p2))
in
check (==) (fun mib -> mib.mind_finite);
check Int.equal (fun mib -> mib.mind_ntypes);
assert (Array.length mib1.mind_packets >= 1
&& Array.length mib2.mind_packets >= 1);
(* Check that the expected numbers of uniform parameters are the same *)
(* No need to check the contexts of parameters: it is checked *)
(* at the time of checking the inductive arities in check_packet. *)
(* Notice that we don't expect the local definitions to match: only *)
(* the inductive types and constructors types have to be convertible *)
check Int.equal (fun mib -> mib.mind_nparams);
(*begin
match mib2.mind_equiv with
| None -> ()
| Some kn2' ->
let kn2 = scrape_mind env kn2' in
let kn1 = match mib1.mind_equiv with
None -> kn
| Some kn1' -> scrape_mind env kn1'
in
if kn1 <> kn2 then error ()
end;*)
(* we check that records and their field names are preserved. *)
let record_equal x y =
match x, y with
| None, None -> true
| Some None, Some None -> true
| Some (Some (id1,p1,pb1)), Some (Some (id2,p2,pb2)) ->
Id.equal id1 id2 &&
Array.for_all2 eq_con_chk p1 p2 &&
Array.for_all2 eq_projection_body pb1 pb2
| _, _ -> false
in
check record_equal (fun mib -> mib.mind_record);
if mib1.mind_record != None then begin
let rec names_prod_letin t = match t with
| Prod(n,_,t) -> n::(names_prod_letin t)
| LetIn(n,_,_,t) -> n::(names_prod_letin t)
| Cast(t,_,_) -> names_prod_letin t
| _ -> []
in
assert (Array.length mib1.mind_packets = 1);
assert (Array.length mib2.mind_packets = 1);
assert (Array.length mib1.mind_packets.(0).mind_user_lc = 1);
assert (Array.length mib2.mind_packets.(0).mind_user_lc = 1);
check
(fun l1 l2 -> List.equal Name.equal l1 l2)
(fun mib -> names_prod_letin mib.mind_packets.(0).mind_user_lc.(0));
end;
(* we first check simple things *)
Array.iter2 check_packet mib1.mind_packets mib2.mind_packets;
(* and constructor types in the end *)
let _ = Array.map2_i check_cons_types mib1.mind_packets mib2.mind_packets
in ()
let check_constant env mp1 l info1 cb2 spec2 subst1 subst2 =
let error () = error_not_match l spec2 in
let check_conv f = check_conv_error error f in
let check_type env t1 t2 =
(* If the type of a constant is generated, it may mention
non-variable algebraic universes that the general conversion
algorithm is not ready to handle. Anyway, generated types of
constants are functions of the body of the constant. If the
bodies are the same in environments that are subtypes one of
the other, the types are subtypes too (i.e. if Gamma <= Gamma',
Gamma |- A |> T, Gamma |- A' |> T' and Gamma |- A=A' then T <= T').
Hence they don't have to be checked again *)
let t1,t2 =
if isArity t2 then
let (ctx2,s2) = destArity t2 in
match s2 with
| Type v when not (Univ.is_univ_variable v) ->
(* The type in the interface is inferred and is made of algebraic
universes *)
begin try
let (ctx1,s1) = dest_arity env t1 in
match s1 with
| Type u when not (Univ.is_univ_variable u) ->
(* Both types are inferred, no need to recheck them. We
cheat and collapse the types to Prop *)
mkArity (ctx1,Prop Null), mkArity (ctx2,Prop Null)
| Prop _ ->
(* The type in the interface is inferred, it may be the case
that the type in the implementation is smaller because
the body is more reduced. We safely collapse the upper
type to Prop *)
mkArity (ctx1,Prop Null), mkArity (ctx2,Prop Null)
| Type _ ->
(* The type in the interface is inferred and the type in the
implementation is not inferred or is inferred but from a
more reduced body so that it is just a variable. Since
constraints of the form "univ <= max(...)" are not
expressible in the system of algebraic universes: we fail
(the user has to use an explicit type in the interface *)
error ()
with UserError _ (* "not an arity" *) ->
error () end
| _ -> t1,t2
else
(t1,t2) in
check_conv conv_leq env t1 t2
in
match info1 with
| Constant cb1 ->
let cb1 = subst_const_body subst1 cb1 in
let cb2 = subst_const_body subst2 cb2 in
(*Start by checking types*)
let typ1 = Typeops.type_of_constant_type env cb1.const_type in
let typ2 = Typeops.type_of_constant_type env cb2.const_type in
check_type env typ1 typ2;
(* Now we check the bodies:
- A transparent constant can only be implemented by a compatible
transparent constant.
- In the signature, an opaque is handled just as a parameter:
anything of the right type can implement it, even if bodies differ.
*)
(match cb2.const_body with
| Undef _ | OpaqueDef _ -> ()
| Def lc2 ->
(match cb1.const_body with
| Undef _ | OpaqueDef _ -> error ()
| Def lc1 ->
(* NB: cb1 might have been strengthened and appear as transparent.
Anyway [check_conv] will handle that afterwards. *)
let c1 = force_constr lc1 in
let c2 = force_constr lc2 in
check_conv conv env c1 c2))
| IndType ((kn,i),mind1) ->
ignore (CErrors.error (
"The kernel does not recognize yet that a parameter can be " ^
"instantiated by an inductive type. Hint: you can rename the " ^
"inductive type and give a definition to map the old name to the new " ^
"name."));
if constant_has_body cb2 then error () ;
let u = inductive_instance mind1 in
let arity1 = type_of_inductive env ((mind1,mind1.mind_packets.(i)),u) in
let typ2 = Typeops.type_of_constant_type env cb2.const_type in
check_conv conv_leq env arity1 typ2
| IndConstr (((kn,i),j) as cstr,mind1) ->
ignore (CErrors.error (
"The kernel does not recognize yet that a parameter can be " ^
"instantiated by a constructor. Hint: you can rename the " ^
"constructor and give a definition to map the old name to the new " ^
"name."));
if constant_has_body cb2 then error () ;
let u1 = inductive_instance mind1 in
let ty1 = type_of_constructor (cstr,u1) (mind1,mind1.mind_packets.(i)) in
let ty2 = Typeops.type_of_constant_type env cb2.const_type in
check_conv conv env ty1 ty2
let rec check_modules env msb1 msb2 subst1 subst2 =
let mty1 = module_type_of_module None msb1 in
let mty2 = module_type_of_module None msb2 in
check_modtypes env mty1 mty2 subst1 subst2 false;
and check_signatures env mp1 sig1 sig2 subst1 subst2 =
let map1 = make_labmap mp1 sig1 in
let check_one_body (l,spec2) =
match spec2 with
| SFBconst cb2 ->
check_constant env mp1 l (get_obj mp1 map1 l)
cb2 spec2 subst1 subst2
| SFBmind mib2 ->
check_inductive env mp1 l (get_obj mp1 map1 l)
mib2 spec2 subst1 subst2
| SFBmodule msb2 ->
begin
match get_mod mp1 map1 l with
| Module msb -> check_modules env msb msb2
subst1 subst2
| _ -> error_not_match l spec2
end
| SFBmodtype mtb2 ->
let mtb1 =
match get_mod mp1 map1 l with
| Modtype mtb -> mtb
| _ -> error_not_match l spec2
in
let env =
add_module_type mtb2.mod_mp mtb2
(add_module_type mtb1.mod_mp mtb1 env)
in
check_modtypes env mtb1 mtb2 subst1 subst2 true
in
List.iter check_one_body sig2
and check_modtypes env mtb1 mtb2 subst1 subst2 equiv =
if mtb1==mtb2 || mtb1.mod_type == mtb2.mod_type then ()
else
let rec check_structure env str1 str2 equiv subst1 subst2 =
match str1,str2 with
| NoFunctor (list1),
NoFunctor (list2) ->
check_signatures env mtb1.mod_mp list1 list2 subst1 subst2;
if equiv then
check_signatures env mtb2.mod_mp list2 list1 subst1 subst2
else
()
| MoreFunctor (arg_id1,arg_t1,body_t1),
MoreFunctor (arg_id2,arg_t2,body_t2) ->
check_modtypes env
arg_t2 arg_t1
(map_mp arg_t1.mod_mp arg_t2.mod_mp) subst2
equiv;
(* contravariant *)
let env = add_module_type (MPbound arg_id2) arg_t2 env in
let env =
if is_functor body_t1 then env
else
let env = shallow_remove_module mtb1.mod_mp env in
add_module {mod_mp = mtb1.mod_mp;
mod_expr = Abstract;
mod_type = body_t1;
mod_type_alg = None;
mod_constraints = mtb1.mod_constraints;
mod_retroknowledge = [];
mod_delta = mtb1.mod_delta} env
in
check_structure env body_t1 body_t2 equiv
(join (map_mbid arg_id1 (MPbound arg_id2)) subst1)
subst2
| _ , _ -> error_incompatible_modtypes mtb1 mtb2
in
check_structure env mtb1.mod_type mtb2.mod_type equiv subst1 subst2
let check_subtypes env sup super =
check_modtypes env (strengthen sup sup.mod_mp) super empty_subst
(map_mp super.mod_mp sup.mod_mp) false
|