summaryrefslogtreecommitdiff
path: root/vernac/comInductive.ml
diff options
context:
space:
mode:
Diffstat (limited to 'vernac/comInductive.ml')
-rw-r--r--vernac/comInductive.ml453
1 files changed, 453 insertions, 0 deletions
diff --git a/vernac/comInductive.ml b/vernac/comInductive.ml
new file mode 100644
index 00000000..05c40dbd
--- /dev/null
+++ b/vernac/comInductive.ml
@@ -0,0 +1,453 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+open Pp
+open CErrors
+open Sorts
+open Util
+open Constr
+open Environ
+open Declare
+open Names
+open Libnames
+open Globnames
+open Nameops
+open Constrexpr
+open Constrexpr_ops
+open Constrintern
+open Nametab
+open Impargs
+open Reductionops
+open Indtypes
+open Pretyping
+open Evarutil
+open Indschemes
+open Misctypes
+open Context.Rel.Declaration
+open Entries
+
+module RelDecl = Context.Rel.Declaration
+
+(* 3b| Mutual inductive definitions *)
+
+let rec complete_conclusion a cs = CAst.map_with_loc (fun ?loc -> function
+ | CProdN (bl,c) -> CProdN (bl,complete_conclusion a cs c)
+ | CLetIn (na,b,t,c) -> CLetIn (na,b,t,complete_conclusion a cs c)
+ | CHole (k, _, _) ->
+ let (has_no_args,name,params) = a in
+ if not has_no_args then
+ user_err ?loc
+ (strbrk"Cannot infer the non constant arguments of the conclusion of "
+ ++ Id.print cs ++ str ".");
+ let args = List.map (fun id -> CAst.(make ?loc @@ CRef(make ?loc @@ Ident id,None))) params in
+ CAppExpl ((None,CAst.make ?loc @@ Ident name,None),List.rev args)
+ | c -> c
+ )
+
+let push_types env idl tl =
+ List.fold_left2 (fun env id t -> EConstr.push_rel (LocalAssum (Name id,t)) env)
+ env idl tl
+
+type structured_one_inductive_expr = {
+ ind_name : Id.t;
+ ind_univs : universe_decl_expr option;
+ ind_arity : constr_expr;
+ ind_lc : (Id.t * constr_expr) list
+}
+
+type structured_inductive_expr =
+ local_binder_expr list * structured_one_inductive_expr list
+
+let minductive_message warn = function
+ | [] -> user_err Pp.(str "No inductive definition.")
+ | [x] -> (Id.print x ++ str " is defined" ++
+ if warn then str " as a non-primitive record" else mt())
+ | l -> hov 0 (prlist_with_sep pr_comma Id.print l ++
+ spc () ++ str "are defined")
+
+let check_all_names_different indl =
+ let ind_names = List.map (fun ind -> ind.ind_name) indl in
+ let cstr_names = List.map_append (fun ind -> List.map fst ind.ind_lc) indl in
+ let l = List.duplicates Id.equal ind_names in
+ let () = match l with
+ | [] -> ()
+ | t :: _ -> raise (InductiveError (SameNamesTypes t))
+ in
+ let l = List.duplicates Id.equal cstr_names in
+ let () = match l with
+ | [] -> ()
+ | c :: _ -> raise (InductiveError (SameNamesConstructors (List.hd l)))
+ in
+ let l = List.intersect Id.equal ind_names cstr_names in
+ match l with
+ | [] -> ()
+ | _ -> raise (InductiveError (SameNamesOverlap l))
+
+let mk_mltype_data sigma env assums arity indname =
+ let is_ml_type = is_sort env sigma arity in
+ (is_ml_type,indname,assums)
+
+let prepare_param = function
+ | LocalAssum (na,t) -> Name.get_id na, LocalAssumEntry t
+ | LocalDef (na,b,_) -> Name.get_id na, LocalDefEntry b
+
+(** Make the arity conclusion flexible to avoid generating an upper bound universe now,
+ only if the universe does not appear anywhere else.
+ This is really a hack to stay compatible with the semantics of template polymorphic
+ inductives which are recognized when a "Type" appears at the end of the conlusion in
+ the source syntax. *)
+
+let rec check_anonymous_type ind =
+ let open Glob_term in
+ match DAst.get ind with
+ | GSort (GType []) -> true
+ | GProd ( _, _, _, e)
+ | GLetIn (_, _, _, e)
+ | GLambda (_, _, _, e)
+ | GApp (e, _)
+ | GCast (e, _) -> check_anonymous_type e
+ | _ -> false
+
+let make_conclusion_flexible sigma ty poly =
+ if poly && Term.isArity ty then
+ let _, concl = Term.destArity ty in
+ match concl with
+ | Type u ->
+ (match Univ.universe_level u with
+ | Some u ->
+ Evd.make_flexible_variable sigma ~algebraic:true u
+ | None -> sigma)
+ | _ -> sigma
+ else sigma
+
+let is_impredicative env u =
+ u = Prop Null || (is_impredicative_set env && u = Prop Pos)
+
+let interp_ind_arity env sigma ind =
+ let c = intern_gen IsType env sigma ind.ind_arity in
+ let impls = Implicit_quantifiers.implicits_of_glob_constr ~with_products:true c in
+ let sigma,t = understand_tcc env sigma ~expected_type:IsType c in
+ let pseudo_poly = check_anonymous_type c in
+ let () = if not (Reductionops.is_arity env sigma t) then
+ user_err ?loc:(constr_loc ind.ind_arity) (str "Not an arity")
+ in
+ sigma, (t, pseudo_poly, impls)
+
+let interp_cstrs env sigma impls mldata arity ind =
+ let cnames,ctyps = List.split ind.ind_lc in
+ (* Complete conclusions of constructor types if given in ML-style syntax *)
+ let ctyps' = List.map2 (complete_conclusion mldata) cnames ctyps in
+ (* Interpret the constructor types *)
+ let sigma, (ctyps'', cimpls) =
+ on_snd List.split @@
+ List.fold_left_map (fun sigma l ->
+ on_snd (on_fst EConstr.Unsafe.to_constr) @@
+ interp_type_evars_impls env sigma ~impls l) sigma ctyps' in
+ sigma, (cnames, ctyps'', cimpls)
+
+let sign_level env evd sign =
+ fst (List.fold_right
+ (fun d (lev,env) ->
+ match d with
+ | LocalDef _ -> lev, push_rel d env
+ | LocalAssum _ ->
+ let s = destSort (Reduction.whd_all env
+ (EConstr.Unsafe.to_constr (nf_evar evd (Retyping.get_type_of env evd (EConstr.of_constr (RelDecl.get_type d))))))
+ in
+ let u = univ_of_sort s in
+ (Univ.sup u lev, push_rel d env))
+ sign (Univ.type0m_univ,env))
+
+let sup_list min = List.fold_left Univ.sup min
+
+let extract_level env evd min tys =
+ let sorts = List.map (fun ty ->
+ let ctx, concl = Reduction.dest_prod_assum env ty in
+ sign_level env evd (LocalAssum (Anonymous, concl) :: ctx)) tys
+ in sup_list min sorts
+
+let is_flexible_sort evd u =
+ match Univ.Universe.level u with
+ | Some l -> Evd.is_flexible_level evd l
+ | None -> false
+
+let inductive_levels env evd poly arities inds =
+ let destarities = List.map (fun x -> x, Reduction.dest_arity env x) arities in
+ let levels = List.map (fun (x,(ctx,a)) ->
+ if a = Prop Null then None
+ else Some (univ_of_sort a)) destarities
+ in
+ let cstrs_levels, min_levels, sizes =
+ CList.split3
+ (List.map2 (fun (_,tys,_) (arity,(ctx,du)) ->
+ let len = List.length tys in
+ let minlev = Sorts.univ_of_sort du in
+ let minlev =
+ if len > 1 && not (is_impredicative env du) then
+ Univ.sup minlev Univ.type0_univ
+ else minlev
+ in
+ let minlev =
+ (** Indices contribute. *)
+ if Indtypes.is_indices_matter () && List.length ctx > 0 then (
+ let ilev = sign_level env evd ctx in
+ Univ.sup ilev minlev)
+ else minlev
+ in
+ let clev = extract_level env evd minlev tys in
+ (clev, minlev, len)) inds destarities)
+ in
+ (* Take the transitive closure of the system of constructors *)
+ (* level constraints and remove the recursive dependencies *)
+ let levels' = Universes.solve_constraints_system (Array.of_list levels)
+ (Array.of_list cstrs_levels) (Array.of_list min_levels)
+ in
+ let evd, arities =
+ CList.fold_left3 (fun (evd, arities) cu (arity,(ctx,du)) len ->
+ if is_impredicative env du then
+ (** Any product is allowed here. *)
+ evd, arity :: arities
+ else (** If in a predicative sort, or asked to infer the type,
+ we take the max of:
+ - indices (if in indices-matter mode)
+ - constructors
+ - Type(1) if there is more than 1 constructor
+ *)
+ (** Constructors contribute. *)
+ let evd =
+ if Sorts.is_set du then
+ if not (Evd.check_leq evd cu Univ.type0_univ) then
+ raise (Indtypes.InductiveError Indtypes.LargeNonPropInductiveNotInType)
+ else evd
+ else evd
+ (* Evd.set_leq_sort env evd (Type cu) du *)
+ in
+ let evd =
+ if len >= 2 && Univ.is_type0m_univ cu then
+ (** "Polymorphic" type constraint and more than one constructor,
+ should not land in Prop. Add constraint only if it would
+ land in Prop directly (no informative arguments as well). *)
+ Evd.set_leq_sort env evd (Prop Pos) du
+ else evd
+ in
+ let duu = Sorts.univ_of_sort du in
+ let evd =
+ if not (Univ.is_small_univ duu) && Univ.Universe.equal cu duu then
+ if is_flexible_sort evd duu && not (Evd.check_leq evd Univ.type0_univ duu) then
+ Evd.set_eq_sort env evd (Prop Null) du
+ else evd
+ else Evd.set_eq_sort env evd (Type cu) du
+ in
+ (evd, arity :: arities))
+ (evd,[]) (Array.to_list levels') destarities sizes
+ in evd, List.rev arities
+
+let check_named {CAst.loc;v=na} = match na with
+| Name _ -> ()
+| Anonymous ->
+ let msg = str "Parameters must be named." in
+ user_err ?loc msg
+
+
+let check_param = function
+| CLocalDef (na, _, _) -> check_named na
+| CLocalAssum (nas, Default _, _) -> List.iter check_named nas
+| CLocalAssum (nas, Generalized _, _) -> ()
+| CLocalPattern {CAst.loc} ->
+ Loc.raise ?loc (Stream.Error "pattern with quote not allowed here")
+
+let interp_mutual_inductive (paramsl,indl) notations cum poly prv finite =
+ check_all_names_different indl;
+ List.iter check_param paramsl;
+ let env0 = Global.env() in
+ let pl = (List.hd indl).ind_univs in
+ let sigma, decl = Univdecls.interp_univ_decl_opt env0 pl in
+ let sigma, (impls, ((env_params, ctx_params), userimpls)) =
+ interp_context_evars env0 sigma paramsl
+ in
+ let indnames = List.map (fun ind -> ind.ind_name) indl in
+
+ (* Names of parameters as arguments of the inductive type (defs removed) *)
+ let assums = List.filter is_local_assum ctx_params in
+ let params = List.map (RelDecl.get_name %> Name.get_id) assums in
+
+ (* Interpret the arities *)
+ let sigma, arities = List.fold_left_map (fun sigma -> interp_ind_arity env_params sigma) sigma indl in
+
+ let fullarities = List.map (fun (c, _, _) -> EConstr.it_mkProd_or_LetIn c ctx_params) arities in
+ let env_ar = push_types env0 indnames fullarities in
+ let env_ar_params = EConstr.push_rel_context ctx_params env_ar in
+
+ (* Compute interpretation metadatas *)
+ let indimpls = List.map (fun (_, _, impls) -> userimpls @
+ lift_implicits (Context.Rel.nhyps ctx_params) impls) arities in
+ let arities = List.map pi1 arities and aritypoly = List.map pi2 arities in
+ let impls = compute_internalization_env env0 sigma ~impls (Inductive (params,true)) indnames fullarities indimpls in
+ let ntn_impls = compute_internalization_env env0 sigma (Inductive (params,true)) indnames fullarities indimpls in
+ let mldatas = List.map2 (mk_mltype_data sigma env_params params) arities indnames in
+
+ let sigma, constructors =
+ Metasyntax.with_syntax_protection (fun () ->
+ (* Temporary declaration of notations and scopes *)
+ List.iter (Metasyntax.set_notation_for_interpretation env_params ntn_impls) notations;
+ (* Interpret the constructor types *)
+ List.fold_left3_map (fun sigma -> interp_cstrs env_ar_params sigma impls) sigma mldatas arities indl)
+ () in
+
+ (* Try further to solve evars, and instantiate them *)
+ let sigma = solve_remaining_evars all_and_fail_flags env_params sigma Evd.empty in
+ (* Compute renewed arities *)
+ let sigma, nf = nf_evars_and_universes sigma in
+ let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf cl,impsl)) constructors in
+ let arities = List.map EConstr.(to_constr sigma) arities in
+ let sigma = List.fold_left2 (fun sigma ty poly -> make_conclusion_flexible sigma ty poly) sigma arities aritypoly in
+ let sigma, arities = inductive_levels env_ar_params sigma poly arities constructors in
+ let sigma, nf' = nf_evars_and_universes sigma in
+ let arities = List.map nf' arities in
+ let constructors = List.map (fun (idl,cl,impsl) -> (idl,List.map nf' cl,impsl)) constructors in
+ let ctx_params = List.map Termops.(map_rel_decl (EConstr.to_constr sigma)) ctx_params in
+ let uctx = Evd.check_univ_decl ~poly sigma decl in
+ List.iter (fun c -> check_evars env_params Evd.empty sigma (EConstr.of_constr c)) arities;
+ Context.Rel.iter (fun c -> check_evars env0 Evd.empty sigma (EConstr.of_constr c)) ctx_params;
+ List.iter (fun (_,ctyps,_) ->
+ List.iter (fun c -> check_evars env_ar_params Evd.empty sigma (EConstr.of_constr c)) ctyps)
+ constructors;
+
+ (* Build the inductive entries *)
+ let entries = List.map4 (fun ind arity template (cnames,ctypes,cimpls) -> {
+ mind_entry_typename = ind.ind_name;
+ mind_entry_arity = arity;
+ mind_entry_template = template;
+ mind_entry_consnames = cnames;
+ mind_entry_lc = ctypes
+ }) indl arities aritypoly constructors in
+ let impls =
+ let len = Context.Rel.nhyps ctx_params in
+ List.map2 (fun indimpls (_,_,cimpls) ->
+ indimpls, List.map (fun impls ->
+ userimpls @ (lift_implicits len impls)) cimpls) indimpls constructors
+ in
+ let univs =
+ match uctx with
+ | Polymorphic_const_entry uctx ->
+ if cum then
+ Cumulative_ind_entry (Univ.CumulativityInfo.from_universe_context uctx)
+ else Polymorphic_ind_entry uctx
+ | Monomorphic_const_entry uctx ->
+ Monomorphic_ind_entry uctx
+ in
+ (* Build the mutual inductive entry *)
+ let mind_ent =
+ { mind_entry_params = List.map prepare_param ctx_params;
+ mind_entry_record = None;
+ mind_entry_finite = finite;
+ mind_entry_inds = entries;
+ mind_entry_private = if prv then Some false else None;
+ mind_entry_universes = univs;
+ }
+ in
+ (if poly && cum then
+ InferCumulativity.infer_inductive env_ar mind_ent
+ else mind_ent), Evd.universe_binders sigma, impls
+
+(* Very syntactical equality *)
+let eq_local_binders bl1 bl2 =
+ List.equal local_binder_eq bl1 bl2
+
+let extract_coercions indl =
+ let mkqid (_,({CAst.v=id},_)) = qualid_of_ident id in
+ let extract lc = List.filter (fun (iscoe,_) -> iscoe) lc in
+ List.map mkqid (List.flatten(List.map (fun (_,_,_,lc) -> extract lc) indl))
+
+let extract_params indl =
+ let paramsl = List.map (fun (_,params,_,_) -> params) indl in
+ match paramsl with
+ | [] -> anomaly (Pp.str "empty list of inductive types.")
+ | params::paramsl ->
+ if not (List.for_all (eq_local_binders params) paramsl) then user_err Pp.(str
+ "Parameters should be syntactically the same for each inductive type.");
+ params
+
+let extract_inductive indl =
+ List.map (fun (({CAst.v=indname},pl),_,ar,lc) -> {
+ ind_name = indname; ind_univs = pl;
+ ind_arity = Option.cata (fun x -> x) (CAst.make @@ CSort (GType [])) ar;
+ ind_lc = List.map (fun (_,({CAst.v=id},t)) -> (id,t)) lc
+ }) indl
+
+let extract_mutual_inductive_declaration_components indl =
+ let indl,ntnl = List.split indl in
+ let params = extract_params indl in
+ let coes = extract_coercions indl in
+ let indl = extract_inductive indl in
+ (params,indl), coes, List.flatten ntnl
+
+let is_recursive mie =
+ let rec is_recursive_constructor lift typ =
+ match Constr.kind typ with
+ | Prod (_,arg,rest) ->
+ not (EConstr.Vars.noccurn Evd.empty (** FIXME *) lift (EConstr.of_constr arg)) ||
+ is_recursive_constructor (lift+1) rest
+ | LetIn (na,b,t,rest) -> is_recursive_constructor (lift+1) rest
+ | _ -> false
+ in
+ match mie.mind_entry_inds with
+ | [ind] ->
+ let nparams = List.length mie.mind_entry_params in
+ List.exists (fun t -> is_recursive_constructor (nparams+1) t) ind.mind_entry_lc
+ | _ -> false
+
+let declare_mutual_inductive_with_eliminations mie pl impls =
+ (* spiwack: raises an error if the structure is supposed to be non-recursive,
+ but isn't *)
+ begin match mie.mind_entry_finite with
+ | Declarations.BiFinite when is_recursive mie ->
+ if Option.has_some mie.mind_entry_record then
+ user_err Pp.(str "Records declared with the keywords Record or Structure cannot be recursive. You can, however, define recursive records using the Inductive or CoInductive command.")
+ else
+ user_err Pp.(str ("Types declared with the keyword Variant cannot be recursive. Recursive types are defined with the Inductive and CoInductive command."))
+ | _ -> ()
+ end;
+ let names = List.map (fun e -> e.mind_entry_typename) mie.mind_entry_inds in
+ let (_, kn), prim = declare_mind mie in
+ let mind = Global.mind_of_delta_kn kn in
+ List.iteri (fun i (indimpls, constrimpls) ->
+ let ind = (mind,i) in
+ let gr = IndRef ind in
+ maybe_declare_manual_implicits false gr indimpls;
+ Declare.declare_univ_binders gr pl;
+ List.iteri
+ (fun j impls ->
+ maybe_declare_manual_implicits false
+ (ConstructRef (ind, succ j)) impls)
+ constrimpls)
+ impls;
+ let warn_prim = match mie.mind_entry_record with Some (Some _) -> not prim | _ -> false in
+ Flags.if_verbose Feedback.msg_info (minductive_message warn_prim names);
+ if mie.mind_entry_private == None
+ then declare_default_schemes mind;
+ mind
+
+type one_inductive_impls =
+ Impargs.manual_explicitation list (* for inds *)*
+ Impargs.manual_explicitation list list (* for constrs *)
+
+let do_mutual_inductive indl cum poly prv finite =
+ let indl,coes,ntns = extract_mutual_inductive_declaration_components indl in
+ (* Interpret the types *)
+ let mie,pl,impls = interp_mutual_inductive indl ntns cum poly prv finite in
+ (* Declare the mutual inductive block with its associated schemes *)
+ ignore (declare_mutual_inductive_with_eliminations mie pl impls);
+ (* Declare the possible notations of inductive types *)
+ List.iter (Metasyntax.add_notation_interpretation (Global.env ())) ntns;
+ (* Declare the coercions *)
+ List.iter (fun qid -> Class.try_add_new_coercion (locate qid) ~local:false poly) coes;
+ (* If positivity is assumed declares itself as unsafe. *)
+ if Environ.deactivated_guard (Global.env ()) then Feedback.feedback Feedback.AddedAxiom else ()