summaryrefslogtreecommitdiff
path: root/theories7/ZArith/Zdiv.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/ZArith/Zdiv.v')
-rw-r--r--theories7/ZArith/Zdiv.v432
1 files changed, 0 insertions, 432 deletions
diff --git a/theories7/ZArith/Zdiv.v b/theories7/ZArith/Zdiv.v
deleted file mode 100644
index 84d53931..00000000
--- a/theories7/ZArith/Zdiv.v
+++ /dev/null
@@ -1,432 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Zdiv.v,v 1.1.2.1 2004/07/16 19:31:43 herbelin Exp $ i*)
-
-(* Contribution by Claude Marché and Xavier Urbain *)
-
-(**
-
-Euclidean Division
-
-Defines first of function that allows Coq to normalize.
-Then only after proves the main required property.
-
-*)
-
-Require Export ZArith_base.
-Require Zbool.
-Require Omega.
-Require ZArithRing.
-Require Zcomplements.
-V7only [Import Z_scope.].
-Open Local Scope Z_scope.
-
-(**
-
- Euclidean division of a positive by a integer
- (that is supposed to be positive).
-
- total function than returns an arbitrary value when
- divisor is not positive
-
-*)
-
-Fixpoint Zdiv_eucl_POS [a:positive] : Z -> Z*Z := [b:Z]
- Cases a of
- | xH => if `(Zge_bool b 2)` then `(0,1)` else `(1,0)`
- | (xO a') =>
- let (q,r) = (Zdiv_eucl_POS a' b) in
- [r':=`2*r`] if `(Zgt_bool b r')` then `(2*q,r')` else `(2*q+1,r'-b)`
- | (xI a') =>
- let (q,r) = (Zdiv_eucl_POS a' b) in
- [r':=`2*r+1`] if `(Zgt_bool b r')` then `(2*q,r')` else `(2*q+1,r'-b)`
- end.
-
-
-(**
-
- Euclidean division of integers.
-
- Total function than returns (0,0) when dividing by 0.
-
-*)
-
-(*
-
- The pseudo-code is:
-
- if b = 0 : (0,0)
-
- if b <> 0 and a = 0 : (0,0)
-
- if b > 0 and a < 0 : let (q,r) = div_eucl_pos (-a) b in
- if r = 0 then (-q,0) else (-(q+1),b-r)
-
- if b < 0 and a < 0 : let (q,r) = div_eucl (-a) (-b) in (q,-r)
-
- if b < 0 and a > 0 : let (q,r) = div_eucl a (-b) in
- if r = 0 then (-q,0) else (-(q+1),b+r)
-
- In other word, when b is non-zero, q is chosen to be the greatest integer
- smaller or equal to a/b. And sgn(r)=sgn(b) and |r| < |b|.
-
-*)
-
-Definition Zdiv_eucl [a,b:Z] : Z*Z :=
- Cases a b of
- | ZERO _ => `(0,0)`
- | _ ZERO => `(0,0)`
- | (POS a') (POS _) => (Zdiv_eucl_POS a' b)
- | (NEG a') (POS _) =>
- let (q,r) = (Zdiv_eucl_POS a' b) in
- Cases r of
- | ZERO => `(-q,0)`
- | _ => `(-(q+1),b-r)`
- end
- | (NEG a') (NEG b') =>
- let (q,r) = (Zdiv_eucl_POS a' (POS b')) in `(q,-r)`
- | (POS a') (NEG b') =>
- let (q,r) = (Zdiv_eucl_POS a' (POS b')) in
- Cases r of
- | ZERO => `(-q,0)`
- | _ => `(-(q+1),b+r)`
- end
- end.
-
-
-(** Division and modulo are projections of [Zdiv_eucl] *)
-
-Definition Zdiv [a,b:Z] : Z := let (q,_) = (Zdiv_eucl a b) in q.
-
-Definition Zmod [a,b:Z] : Z := let (_,r) = (Zdiv_eucl a b) in r.
-
-(* Tests:
-
-Eval Compute in `(Zdiv_eucl 7 3)`.
-
-Eval Compute in `(Zdiv_eucl (-7) 3)`.
-
-Eval Compute in `(Zdiv_eucl 7 (-3))`.
-
-Eval Compute in `(Zdiv_eucl (-7) (-3))`.
-
-*)
-
-
-(**
-
- Main division theorem.
-
- First a lemma for positive
-
-*)
-
-Lemma Z_div_mod_POS : (b:Z)`b > 0` -> (a:positive)
- let (q,r)=(Zdiv_eucl_POS a b) in `(POS a) = b*q + r`/\`0<=r<b`.
-Proof.
-Induction a; Unfold Zdiv_eucl_POS; Fold Zdiv_eucl_POS.
-
-Intro p; Case (Zdiv_eucl_POS p b); Intros q r (H0,H1).
-Generalize (Zgt_cases b `2*r+1`).
-Case (Zgt_bool b `2*r+1`);
-(Rewrite POS_xI; Rewrite H0; Split ; [ Ring | Omega ]).
-
-Intros p; Case (Zdiv_eucl_POS p b); Intros q r (H0,H1).
-Generalize (Zgt_cases b `2*r`).
-Case (Zgt_bool b `2*r`);
- Rewrite POS_xO; Change (POS (xO p)) with `2*(POS p)`;
- Rewrite H0; (Split; [Ring | Omega]).
-
-Generalize (Zge_cases b `2`).
-Case (Zge_bool b `2`); (Intros; Split; [Ring | Omega ]).
-Omega.
-Qed.
-
-
-Theorem Z_div_mod : (a,b:Z)`b > 0` ->
- let (q,r) = (Zdiv_eucl a b) in `a = b*q + r` /\ `0<=r<b`.
-Proof.
-Intros a b; Case a; Case b; Try (Simpl; Intros; Omega).
-Unfold Zdiv_eucl; Intros; Apply Z_div_mod_POS; Trivial.
-
-Intros; Discriminate.
-
-Intros.
-Generalize (Z_div_mod_POS (POS p) H p0).
-Unfold Zdiv_eucl.
-Case (Zdiv_eucl_POS p0 (POS p)).
-Intros z z0.
-Case z0.
-
-Intros [H1 H2].
-Split; Trivial.
-Replace (NEG p0) with `-(POS p0)`; [ Rewrite H1; Ring | Trivial ].
-
-Intros p1 [H1 H2].
-Split; Trivial.
-Replace (NEG p0) with `-(POS p0)`; [ Rewrite H1; Ring | Trivial ].
-Generalize (POS_gt_ZERO p1); Omega.
-
-Intros p1 [H1 H2].
-Split; Trivial.
-Replace (NEG p0) with `-(POS p0)`; [ Rewrite H1; Ring | Trivial ].
-Generalize (NEG_lt_ZERO p1); Omega.
-
-Intros; Discriminate.
-Qed.
-
-(** Existence theorems *)
-
-Theorem Zdiv_eucl_exist : (b:Z)`b > 0` -> (a:Z)
- { qr:Z*Z | let (q,r)=qr in `a=b*q+r` /\ `0 <= r < b` }.
-Proof.
-Intros b Hb a.
-Exists (Zdiv_eucl a b).
-Exact (Z_div_mod a b Hb).
-Qed.
-
-Implicits Zdiv_eucl_exist.
-
-Theorem Zdiv_eucl_extended : (b:Z)`b <> 0` -> (a:Z)
- { qr:Z*Z | let (q,r)=qr in `a=b*q+r` /\ `0 <= r < |b|` }.
-Proof.
-Intros b Hb a.
-Elim (Z_le_gt_dec `0` b);Intro Hb'.
-Cut `b>0`;[Intro Hb''|Omega].
-Rewrite Zabs_eq;[Apply Zdiv_eucl_exist;Assumption|Assumption].
-Cut `-b>0`;[Intro Hb''|Omega].
-Elim (Zdiv_eucl_exist Hb'' a);Intros qr.
-Elim qr;Intros q r Hqr.
-Exists (pair ? ? `-q` r).
-Elim Hqr;Intros.
-Split.
-Rewrite <- Zmult_Zopp_left;Assumption.
-Rewrite Zabs_non_eq;[Assumption|Omega].
-Qed.
-
-Implicits Zdiv_eucl_extended.
-
-(** Auxiliary lemmas about [Zdiv] and [Zmod] *)
-
-Lemma Z_div_mod_eq : (a,b:Z)`b > 0` -> `a = b * (Zdiv a b) + (Zmod a b)`.
-Proof.
-Unfold Zdiv Zmod.
-Intros a b Hb.
-Generalize (Z_div_mod a b Hb).
-Case (Zdiv_eucl); Tauto.
-Save.
-
-Lemma Z_mod_lt : (a,b:Z)`b > 0` -> `0 <= (Zmod a b) < b`.
-Proof.
-Unfold Zmod.
-Intros a b Hb.
-Generalize (Z_div_mod a b Hb).
-Case (Zdiv_eucl a b); Tauto.
-Save.
-
-Lemma Z_div_POS_ge0 : (b:Z)(a:positive)
- let (q,_) = (Zdiv_eucl_POS a b) in `q >= 0`.
-Proof.
-Induction a; Unfold Zdiv_eucl_POS; Fold Zdiv_eucl_POS.
-Intro p; Case (Zdiv_eucl_POS p b).
-Intros; Case (Zgt_bool b `2*z0+1`); Intros; Omega.
-Intro p; Case (Zdiv_eucl_POS p b).
-Intros; Case (Zgt_bool b `2*z0`); Intros; Omega.
-Case (Zge_bool b `2`); Simpl; Omega.
-Save.
-
-Lemma Z_div_ge0 : (a,b:Z)`b > 0` -> `a >= 0` -> `(Zdiv a b) >= 0`.
-Proof.
-Intros a b Hb; Unfold Zdiv Zdiv_eucl; Case a; Simpl; Intros.
-Case b; Simpl; Trivial.
-Generalize Hb; Case b; Try Trivial.
-Auto with zarith.
-Intros p0 Hp0; Generalize (Z_div_POS_ge0 (POS p0) p).
-Case (Zdiv_eucl_POS p (POS p0)); Simpl; Tauto.
-Intros; Discriminate.
-Elim H; Trivial.
-Save.
-
-Lemma Z_div_lt : (a,b:Z)`b >= 2` -> `a > 0` -> `(Zdiv a b) < a`.
-Proof.
-Intros. Cut `b > 0`; [Intro Hb | Omega].
-Generalize (Z_div_mod a b Hb).
-Cut `a >= 0`; [Intro Ha | Omega].
-Generalize (Z_div_ge0 a b Hb Ha).
-Unfold Zdiv; Case (Zdiv_eucl a b); Intros q r H1 [H2 H3].
-Cut `a >= 2*q` -> `q < a`; [ Intro h; Apply h; Clear h | Intros; Omega ].
-Apply Zge_trans with `b*q`.
-Omega.
-Auto with zarith.
-Save.
-
-(** Syntax *)
-
-V7only[
-Grammar znatural expr2 : constr :=
- expr_div [ expr2($p) "/" expr2($c) ] -> [ (Zdiv $p $c) ]
-| expr_mod [ expr2($p) "%" expr2($c) ] -> [ (Zmod $p $c) ]
-.
-
-Syntax constr
- level 6:
- Zdiv [ (Zdiv $n1 $n2) ]
- -> [ [<hov 0> "`"(ZEXPR $n1):E "/" [0 0] (ZEXPR $n2):L "`"] ]
- | Zmod [ (Zmod $n1 $n2) ]
- -> [ [<hov 0> "`"(ZEXPR $n1):E "%" [0 0] (ZEXPR $n2):L "`"] ]
- | Zdiv_inside
- [ << (ZEXPR <<(Zdiv $n1 $n2)>>) >> ]
- -> [ (ZEXPR $n1):E "/" [0 0] (ZEXPR $n2):L ]
- | Zmod_inside
- [ << (ZEXPR <<(Zmod $n1 $n2)>>) >> ]
- -> [ (ZEXPR $n1):E " %" [1 0] (ZEXPR $n2):L ]
-.
-].
-
-
-Infix 3 "/" Zdiv (no associativity) : Z_scope V8only.
-Infix 3 "mod" Zmod (no associativity) : Z_scope.
-
-(** Other lemmas (now using the syntax for [Zdiv] and [Zmod]). *)
-
-Lemma Z_div_ge : (a,b,c:Z)`c > 0`->`a >= b`->`a/c >= b/c`.
-Proof.
-Intros a b c cPos aGeb.
-Generalize (Z_div_mod_eq a c cPos).
-Generalize (Z_mod_lt a c cPos).
-Generalize (Z_div_mod_eq b c cPos).
-Generalize (Z_mod_lt b c cPos).
-Intros.
-Elim (Z_ge_lt_dec `a/c` `b/c`); Trivial.
-Intro.
-Absurd `b-a >= 1`.
-Omega.
-Rewrite -> H0.
-Rewrite -> H2.
-Assert `c*(b/c)+b % c-(c*(a/c)+a % c) = c*(b/c - a/c) + b % c - a % c`.
-Ring.
-Rewrite H3.
-Assert `c*(b/c-a/c) >= c*1`.
-Apply Zge_Zmult_pos_left.
-Omega.
-Omega.
-Assert `c*1=c`.
-Ring.
-Omega.
-Save.
-
-Lemma Z_mod_plus : (a,b,c:Z)`c > 0`->`(a+b*c) % c = a % c`.
-Proof.
-Intros a b c cPos.
-Generalize (Z_div_mod_eq a c cPos).
-Generalize (Z_mod_lt a c cPos).
-Generalize (Z_div_mod_eq `a+b*c` c cPos).
-Generalize (Z_mod_lt `a+b*c` c cPos).
-Intros.
-
-Assert `(a+b*c) % c - a % c = c*(b+a/c - (a+b*c)/c)`.
-Replace `(a+b*c) % c` with `a+b*c - c*((a+b*c)/c)`.
-Replace `a % c` with `a - c*(a/c)`.
-Ring.
-Omega.
-Omega.
-LetTac q := `b+a/c-(a+b*c)/c`.
-Apply (Zcase_sign q); Intros.
-Assert `c*q=0`.
-Rewrite H4; Ring.
-Rewrite H5 in H3.
-Omega.
-
-Assert `c*q >= c`.
-Pattern 2 c; Replace c with `c*1`.
-Apply Zge_Zmult_pos_left; Omega.
-Ring.
-Omega.
-
-Assert `c*q <= -c`.
-Replace `-c` with `c*(-1)`.
-Apply Zle_Zmult_pos_left; Omega.
-Ring.
-Omega.
-Save.
-
-Lemma Z_div_plus : (a,b,c:Z)`c > 0`->`(a+b*c)/c = a/c+b`.
-Proof.
-Intros a b c cPos.
-Generalize (Z_div_mod_eq a c cPos).
-Generalize (Z_mod_lt a c cPos).
-Generalize (Z_div_mod_eq `a+b*c` c cPos).
-Generalize (Z_mod_lt `a+b*c` c cPos).
-Intros.
-Apply Zmult_reg_left with c. Omega.
-Replace `c*((a+b*c)/c)` with `a+b*c-(a+b*c) % c`.
-Rewrite (Z_mod_plus a b c cPos).
-Pattern 1 a; Rewrite H2.
-Ring.
-Pattern 1 `a+b*c`; Rewrite H0.
-Ring.
-Save.
-
-Lemma Z_div_mult : (a,b:Z)`b > 0`->`(a*b)/b = a`.
-Intros; Replace `a*b` with `0+a*b`; Auto.
-Rewrite Z_div_plus; Auto.
-Save.
-
-Lemma Z_mult_div_ge : (a,b:Z)`b>0`->`b*(a/b) <= a`.
-Proof.
-Intros a b bPos.
-Generalize (Z_div_mod_eq `a` ? bPos); Intros.
-Generalize (Z_mod_lt `a` ? bPos); Intros.
-Pattern 2 a; Rewrite H.
-Omega.
-Save.
-
-Lemma Z_mod_same : (a:Z)`a>0`->`a % a=0`.
-Proof.
-Intros a aPos.
-Generalize (Z_mod_plus `0` `1` a aPos).
-Replace `0+1*a` with `a`.
-Intros.
-Rewrite H.
-Compute.
-Trivial.
-Ring.
-Save.
-
-Lemma Z_div_same : (a:Z)`a>0`->`a/a=1`.
-Proof.
-Intros a aPos.
-Generalize (Z_div_plus `0` `1` a aPos).
-Replace `0+1*a` with `a`.
-Intros.
-Rewrite H.
-Compute.
-Trivial.
-Ring.
-Save.
-
-Lemma Z_div_exact_1 : (a,b:Z)`b>0` -> `a = b*(a/b)` -> `a%b = 0`.
-Intros a b Hb; Generalize (Z_div_mod a b Hb); Unfold Zmod Zdiv.
-Case (Zdiv_eucl a b); Intros q r; Omega.
-Save.
-
-Lemma Z_div_exact_2 : (a,b:Z)`b>0` -> `a%b = 0` -> `a = b*(a/b)`.
-Intros a b Hb; Generalize (Z_div_mod a b Hb); Unfold Zmod Zdiv.
-Case (Zdiv_eucl a b); Intros q r; Omega.
-Save.
-
-Lemma Z_mod_zero_opp : (a,b:Z)`b>0` -> `a%b = 0` -> `(-a)%b = 0`.
-Intros a b Hb.
-Intros.
-Rewrite Z_div_exact_2 with a b; Auto.
-Replace `-(b*(a/b))` with `0+(-(a/b))*b`.
-Rewrite Z_mod_plus; Auto.
-Ring.
-Save.
-