summaryrefslogtreecommitdiff
path: root/theories7/Sets/Finite_sets_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Sets/Finite_sets_facts.v')
-rwxr-xr-xtheories7/Sets/Finite_sets_facts.v345
1 files changed, 345 insertions, 0 deletions
diff --git a/theories7/Sets/Finite_sets_facts.v b/theories7/Sets/Finite_sets_facts.v
new file mode 100755
index 00000000..63d4d2ad
--- /dev/null
+++ b/theories7/Sets/Finite_sets_facts.v
@@ -0,0 +1,345 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(****************************************************************************)
+(* *)
+(* Naive Set Theory in Coq *)
+(* *)
+(* INRIA INRIA *)
+(* Rocquencourt Sophia-Antipolis *)
+(* *)
+(* Coq V6.1 *)
+(* *)
+(* Gilles Kahn *)
+(* Gerard Huet *)
+(* *)
+(* *)
+(* *)
+(* Acknowledgments: This work was started in July 1993 by F. Prost. Thanks *)
+(* to the Newton Institute for providing an exceptional work environment *)
+(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
+(****************************************************************************)
+
+(*i $Id: Finite_sets_facts.v,v 1.1.2.1 2004/07/16 19:31:39 herbelin Exp $ i*)
+
+Require Export Finite_sets.
+Require Export Constructive_sets.
+Require Export Classical_Type.
+Require Export Classical_sets.
+Require Export Powerset.
+Require Export Powerset_facts.
+Require Export Powerset_Classical_facts.
+Require Export Gt.
+Require Export Lt.
+
+Section Finite_sets_facts.
+Variable U: Type.
+
+Lemma finite_cardinal :
+ (X: (Ensemble U)) (Finite U X) -> (EX n:nat |(cardinal U X n)).
+Proof.
+NewInduction 1 as [|A _ [n H]].
+Exists O; Auto with sets.
+Exists (S n); Auto with sets.
+Qed.
+
+Lemma cardinal_finite:
+ (X: (Ensemble U)) (n: nat) (cardinal U X n) -> (Finite U X).
+Proof.
+NewInduction 1; Auto with sets.
+Qed.
+
+Theorem Add_preserves_Finite:
+ (X: (Ensemble U)) (x: U) (Finite U X) -> (Finite U (Add U X x)).
+Proof.
+Intros X x H'.
+Elim (classic (In U X x)); Intro H'0; Auto with sets.
+Rewrite (Non_disjoint_union U X x); Auto with sets.
+Qed.
+Hints Resolve Add_preserves_Finite.
+
+Theorem Singleton_is_finite: (x: U) (Finite U (Singleton U x)).
+Proof.
+Intro x; Rewrite <- (Empty_set_zero U (Singleton U x)).
+Change (Finite U (Add U (Empty_set U) x)); Auto with sets.
+Qed.
+Hints Resolve Singleton_is_finite.
+
+Theorem Union_preserves_Finite:
+ (X, Y: (Ensemble U)) (Finite U X) -> (Finite U Y) ->
+ (Finite U (Union U X Y)).
+Proof.
+Intros X Y H'; Elim H'.
+Rewrite (Empty_set_zero U Y); Auto with sets.
+Intros A H'0 H'1 x H'2 H'3.
+Rewrite (Union_commutative U (Add U A x) Y).
+Rewrite <- (Union_add U Y A x).
+Rewrite (Union_commutative U Y A); Auto with sets.
+Qed.
+
+Lemma Finite_downward_closed:
+ (A: (Ensemble U)) (Finite U A) ->
+ (X: (Ensemble U)) (Included U X A) -> (Finite U X).
+Proof.
+Intros A H'; Elim H'; Auto with sets.
+Intros X H'0.
+Rewrite (less_than_empty U X H'0); Auto with sets.
+Intros; Elim Included_Add with U X A0 x; Auto with sets.
+NewDestruct 1 as [A' [H5 H6]].
+Rewrite H5; Auto with sets.
+Qed.
+
+Lemma Intersection_preserves_finite:
+ (A: (Ensemble U)) (Finite U A) ->
+ (X: (Ensemble U)) (Finite U (Intersection U X A)).
+Proof.
+Intros A H' X; Apply Finite_downward_closed with A; Auto with sets.
+Qed.
+
+Lemma cardinalO_empty:
+ (X: (Ensemble U)) (cardinal U X O) -> X == (Empty_set U).
+Proof.
+Intros X H; Apply (cardinal_invert U X O); Trivial with sets.
+Qed.
+Hints Resolve cardinalO_empty.
+
+Lemma inh_card_gt_O:
+ (X: (Ensemble U)) (Inhabited U X) -> (n: nat) (cardinal U X n) -> (gt n O).
+Proof.
+NewInduction 1 as [x H'].
+Intros n H'0.
+Elim (gt_O_eq n); Auto with sets.
+Intro H'1; Generalize H'; Generalize H'0.
+Rewrite <- H'1; Intro H'2.
+Rewrite (cardinalO_empty X); Auto with sets.
+Intro H'3; Elim H'3.
+Qed.
+
+Lemma card_soustr_1:
+ (X: (Ensemble U)) (n: nat) (cardinal U X n) ->
+ (x: U) (In U X x) -> (cardinal U (Subtract U X x) (pred n)).
+Proof.
+Intros X n H'; Elim H'.
+Intros x H'0; Elim H'0.
+Clear H' n X.
+Intros X n H' H'0 x H'1 x0 H'2.
+Elim (classic (In U X x0)).
+Intro H'4; Rewrite (add_soustr_xy U X x x0).
+Elim (classic x == x0).
+Intro H'5.
+Absurd (In U X x0); Auto with sets.
+Rewrite <- H'5; Auto with sets.
+Intro H'3; Try Assumption.
+Cut (S (pred n)) = (pred (S n)).
+Intro H'5; Rewrite <- H'5.
+Apply card_add; Auto with sets.
+Red; Intro H'6; Elim H'6.
+Intros H'7 H'8; Try Assumption.
+Elim H'1; Auto with sets.
+Unfold 2 pred; Symmetry.
+Apply S_pred with m := O.
+Change (gt n O).
+Apply inh_card_gt_O with X := X; Auto with sets.
+Apply Inhabited_intro with x := x0; Auto with sets.
+Red; Intro H'3.
+Apply H'1.
+Elim H'3; Auto with sets.
+Rewrite H'3; Auto with sets.
+Elim (classic x == x0).
+Intro H'3; Rewrite <- H'3.
+Cut (Subtract U (Add U X x) x) == X; Auto with sets.
+Intro H'4; Rewrite H'4; Auto with sets.
+Intros H'3 H'4; Try Assumption.
+Absurd (In U (Add U X x) x0); Auto with sets.
+Red; Intro H'5; Try Exact H'5.
+LApply (Add_inv U X x x0); Tauto.
+Qed.
+
+Lemma cardinal_is_functional:
+ (X: (Ensemble U)) (c1: nat) (cardinal U X c1) ->
+ (Y: (Ensemble U)) (c2: nat) (cardinal U Y c2) -> X == Y ->
+ c1 = c2.
+Proof.
+Intros X c1 H'; Elim H'.
+Intros Y c2 H'0; Elim H'0; Auto with sets.
+Intros A n H'1 H'2 x H'3 H'5.
+Elim (not_Empty_Add U A x); Auto with sets.
+Clear H' c1 X.
+Intros X n H' H'0 x H'1 Y c2 H'2.
+Elim H'2.
+Intro H'3.
+Elim (not_Empty_Add U X x); Auto with sets.
+Clear H'2 c2 Y.
+Intros X0 c2 H'2 H'3 x0 H'4 H'5.
+Elim (classic (In U X0 x)).
+Intro H'6; Apply f_equal with nat.
+Apply H'0 with Y := (Subtract U (Add U X0 x0) x).
+ElimType (pred (S c2)) = c2; Auto with sets.
+Apply card_soustr_1; Auto with sets.
+Rewrite <- H'5.
+Apply Sub_Add_new; Auto with sets.
+Elim (classic x == x0).
+Intros H'6 H'7; Apply f_equal with nat.
+Apply H'0 with Y := X0; Auto with sets.
+Apply Simplify_add with x := x; Auto with sets.
+Pattern 2 x; Rewrite H'6; Auto with sets.
+Intros H'6 H'7.
+Absurd (Add U X x) == (Add U X0 x0); Auto with sets.
+Clear H'0 H' H'3 n H'5 H'4 H'2 H'1 c2.
+Red; Intro H'.
+LApply (Extension U (Add U X x) (Add U X0 x0)); Auto with sets.
+Clear H'.
+Intro H'; Red in H'.
+Elim H'; Intros H'0 H'1; Red in H'0; Clear H' H'1.
+Absurd (In U (Add U X0 x0) x); Auto with sets.
+LApply (Add_inv U X0 x0 x); [ Intuition | Apply (H'0 x); Apply Add_intro2 ].
+Qed.
+
+Lemma cardinal_Empty : (m:nat)(cardinal U (Empty_set U) m) -> O = m.
+Proof.
+Intros m Cm; Generalize (cardinal_invert U (Empty_set U) m Cm).
+Elim m; Auto with sets.
+Intros; Elim H0; Intros; Elim H1; Intros; Elim H2; Intros.
+Elim (not_Empty_Add U x x0 H3).
+Qed.
+
+Lemma cardinal_unicity :
+ (X: (Ensemble U)) (n: nat) (cardinal U X n) ->
+ (m: nat) (cardinal U X m) -> n = m.
+Proof.
+Intros; Apply cardinal_is_functional with X X; Auto with sets.
+Qed.
+
+Lemma card_Add_gen:
+ (A: (Ensemble U))
+ (x: U) (n, n': nat) (cardinal U A n) -> (cardinal U (Add U A x) n') ->
+ (le n' (S n)).
+Proof.
+Intros A x n n' H'.
+Elim (classic (In U A x)).
+Intro H'0.
+Rewrite (Non_disjoint_union U A x H'0).
+Intro H'1; Cut n = n'.
+Intro E; Rewrite E; Auto with sets.
+Apply cardinal_unicity with A; Auto with sets.
+Intros H'0 H'1.
+Cut n'=(S n).
+Intro E; Rewrite E; Auto with sets.
+Apply cardinal_unicity with (Add U A x); Auto with sets.
+Qed.
+
+Lemma incl_st_card_lt:
+ (X: (Ensemble U)) (c1: nat) (cardinal U X c1) ->
+ (Y: (Ensemble U)) (c2: nat) (cardinal U Y c2) -> (Strict_Included U X Y) ->
+ (gt c2 c1).
+Proof.
+Intros X c1 H'; Elim H'.
+Intros Y c2 H'0; Elim H'0; Auto with sets arith.
+Intro H'1.
+Elim (Strict_Included_strict U (Empty_set U)); Auto with sets arith.
+Clear H' c1 X.
+Intros X n H' H'0 x H'1 Y c2 H'2.
+Elim H'2.
+Intro H'3; Elim (not_SIncl_empty U (Add U X x)); Auto with sets arith.
+Clear H'2 c2 Y.
+Intros X0 c2 H'2 H'3 x0 H'4 H'5; Elim (classic (In U X0 x)).
+Intro H'6; Apply gt_n_S.
+Apply H'0 with Y := (Subtract U (Add U X0 x0) x).
+ElimType (pred (S c2)) = c2; Auto with sets arith.
+Apply card_soustr_1; Auto with sets arith.
+Apply incl_st_add_soustr; Auto with sets arith.
+Elim (classic x == x0).
+Intros H'6 H'7; Apply gt_n_S.
+Apply H'0 with Y := X0; Auto with sets arith.
+Apply sincl_add_x with x := x0.
+Rewrite <- H'6; Auto with sets arith.
+Pattern 1 x0; Rewrite <- H'6; Trivial with sets arith.
+Intros H'6 H'7; Red in H'5.
+Elim H'5; Intros H'8 H'9; Try Exact H'8; Clear H'5.
+Red in H'8.
+Generalize (H'8 x).
+Intro H'5; LApply H'5; Auto with sets arith.
+Intro H; Elim Add_inv with U X0 x0 x; Auto with sets arith.
+Intro; Absurd (In U X0 x); Auto with sets arith.
+Intro; Absurd x==x0; Auto with sets arith.
+Qed.
+
+Lemma incl_card_le:
+ (X,Y: (Ensemble U)) (n,m: nat) (cardinal U X n) -> (cardinal U Y m) ->
+ (Included U X Y) -> (le n m).
+Proof.
+Intros;
+Elim Included_Strict_Included with U X Y; Auto with sets arith; Intro.
+Cut (gt m n); Auto with sets arith.
+Apply incl_st_card_lt with X := X Y := Y; Auto with sets arith.
+Generalize H0; Rewrite <- H2; Intro.
+Cut n=m.
+Intro E; Rewrite E; Auto with sets arith.
+Apply cardinal_unicity with X; Auto with sets arith.
+Qed.
+
+Lemma G_aux:
+ (P:(Ensemble U) ->Prop)
+ ((X:(Ensemble U))
+ (Finite U X) -> ((Y:(Ensemble U)) (Strict_Included U Y X) ->(P Y)) ->(P X)) ->
+ (P (Empty_set U)).
+Proof.
+Intros P H'; Try Assumption.
+Apply H'; Auto with sets.
+Clear H'; Auto with sets.
+Intros Y H'; Try Assumption.
+Red in H'.
+Elim H'; Intros H'0 H'1; Try Exact H'1; Clear H'.
+LApply (less_than_empty U Y); [Intro H'3; Try Exact H'3 | Assumption].
+Elim H'1; Auto with sets.
+Qed.
+
+Hints Unfold not.
+
+Lemma Generalized_induction_on_finite_sets:
+ (P:(Ensemble U) ->Prop)
+ ((X:(Ensemble U))
+ (Finite U X) -> ((Y:(Ensemble U)) (Strict_Included U Y X) ->(P Y)) ->(P X)) ->
+ (X:(Ensemble U)) (Finite U X) ->(P X).
+Proof.
+Intros P H'0 X H'1.
+Generalize P H'0; Clear H'0 P.
+Elim H'1.
+Intros P H'0.
+Apply G_aux; Auto with sets.
+Clear H'1 X.
+Intros A H' H'0 x H'1 P H'3.
+Cut (Y:(Ensemble U)) (Included U Y (Add U A x)) ->(P Y); Auto with sets.
+Generalize H'1.
+Apply H'0.
+Intros X K H'5 L Y H'6; Apply H'3; Auto with sets.
+Apply Finite_downward_closed with A := (Add U X x); Auto with sets.
+Intros Y0 H'7.
+Elim (Strict_inclusion_is_transitive_with_inclusion U Y0 Y (Add U X x)); Auto with sets.
+Intros H'2 H'4.
+Elim (Included_Add U Y0 X x);
+ [Intro H'14 |
+ Intro H'14; Elim H'14; Intros A' E; Elim E; Intros H'15 H'16; Clear E H'14 |
+ Idtac]; Auto with sets.
+Elim (Included_Strict_Included U Y0 X); Auto with sets.
+Intro H'9; Apply H'5 with Y := Y0; Auto with sets.
+Intro H'9; Rewrite H'9.
+Apply H'3; Auto with sets.
+Intros Y1 H'8; Elim H'8.
+Intros H'10 H'11; Apply H'5 with Y := Y1; Auto with sets.
+Elim (Included_Strict_Included U A' X); Auto with sets.
+Intro H'8; Apply H'5 with Y := A'; Auto with sets.
+Rewrite <- H'15; Auto with sets.
+Intro H'8.
+Elim H'7.
+Intros H'9 H'10; Apply H'10 Orelse Elim H'10; Try Assumption.
+Generalize H'6.
+Rewrite <- H'8.
+Rewrite <- H'15; Auto with sets.
+Qed.
+
+End Finite_sets_facts.