summaryrefslogtreecommitdiff
path: root/theories7/Relations/Relation_Operators.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Relations/Relation_Operators.v')
-rwxr-xr-xtheories7/Relations/Relation_Operators.v157
1 files changed, 157 insertions, 0 deletions
diff --git a/theories7/Relations/Relation_Operators.v b/theories7/Relations/Relation_Operators.v
new file mode 100755
index 00000000..14c2ae30
--- /dev/null
+++ b/theories7/Relations/Relation_Operators.v
@@ -0,0 +1,157 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Relation_Operators.v,v 1.1.2.1 2004/07/16 19:31:38 herbelin Exp $ i*)
+
+(****************************************************************************)
+(* Bruno Barras, Cristina Cornes *)
+(* *)
+(* Some of these definitons were taken from : *)
+(* Constructing Recursion Operators in Type Theory *)
+(* L. Paulson JSC (1986) 2, 325-355 *)
+(****************************************************************************)
+
+Require Relation_Definitions.
+Require PolyList.
+Require PolyListSyntax.
+
+(** Some operators to build relations *)
+
+Section Transitive_Closure.
+ Variable A: Set.
+ Variable R: (relation A).
+
+ Inductive clos_trans : A->A->Prop :=
+ t_step: (x,y:A)(R x y)->(clos_trans x y)
+ | t_trans: (x,y,z:A)(clos_trans x y)->(clos_trans y z)->(clos_trans x z).
+End Transitive_Closure.
+
+
+Section Reflexive_Transitive_Closure.
+ Variable A: Set.
+ Variable R: (relation A).
+
+ Inductive clos_refl_trans: (relation A) :=
+ rt_step: (x,y:A)(R x y)->(clos_refl_trans x y)
+ | rt_refl: (x:A)(clos_refl_trans x x)
+ | rt_trans: (x,y,z: A)(clos_refl_trans x y)->(clos_refl_trans y z)
+ ->(clos_refl_trans x z).
+End Reflexive_Transitive_Closure.
+
+
+Section Reflexive_Symetric_Transitive_Closure.
+ Variable A: Set.
+ Variable R: (relation A).
+
+ Inductive clos_refl_sym_trans: (relation A) :=
+ rst_step: (x,y:A)(R x y)->(clos_refl_sym_trans x y)
+ | rst_refl: (x:A)(clos_refl_sym_trans x x)
+ | rst_sym: (x,y:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y x)
+ | rst_trans: (x,y,z:A)(clos_refl_sym_trans x y)->(clos_refl_sym_trans y z)
+ ->(clos_refl_sym_trans x z).
+End Reflexive_Symetric_Transitive_Closure.
+
+
+Section Transposee.
+ Variable A: Set.
+ Variable R: (relation A).
+
+ Definition transp := [x,y:A](R y x).
+End Transposee.
+
+
+Section Union.
+ Variable A: Set.
+ Variable R1,R2: (relation A).
+
+ Definition union := [x,y:A](R1 x y)\/(R2 x y).
+End Union.
+
+
+Section Disjoint_Union.
+Variable A,B:Set.
+Variable leA: A->A->Prop.
+Variable leB: B->B->Prop.
+
+Inductive le_AsB : A+B->A+B->Prop :=
+ le_aa: (x,y:A) (leA x y) -> (le_AsB (inl A B x) (inl A B y))
+| le_ab: (x:A)(y:B) (le_AsB (inl A B x) (inr A B y))
+| le_bb: (x,y:B) (leB x y) -> (le_AsB (inr A B x) (inr A B y)).
+
+End Disjoint_Union.
+
+
+
+Section Lexicographic_Product.
+(* Lexicographic order on dependent pairs *)
+
+Variable A:Set.
+Variable B:A->Set.
+Variable leA: A->A->Prop.
+Variable leB: (x:A)(B x)->(B x)->Prop.
+
+Inductive lexprod : (sigS A B) -> (sigS A B) ->Prop :=
+ left_lex : (x,x':A)(y:(B x)) (y':(B x'))
+ (leA x x') ->(lexprod (existS A B x y) (existS A B x' y'))
+| right_lex : (x:A) (y,y':(B x))
+ (leB x y y') -> (lexprod (existS A B x y) (existS A B x y')).
+End Lexicographic_Product.
+
+
+Section Symmetric_Product.
+ Variable A:Set.
+ Variable B:Set.
+ Variable leA: A->A->Prop.
+ Variable leB: B->B->Prop.
+
+ Inductive symprod : (A*B) -> (A*B) ->Prop :=
+ left_sym : (x,x':A)(leA x x')->(y:B)(symprod (x,y) (x',y))
+ | right_sym : (y,y':B)(leB y y')->(x:A)(symprod (x,y) (x,y')).
+
+End Symmetric_Product.
+
+
+Section Swap.
+ Variable A:Set.
+ Variable R:A->A->Prop.
+
+ Inductive swapprod: (A*A)->(A*A)->Prop :=
+ sp_noswap: (x,x':A*A)(symprod A A R R x x')->(swapprod x x')
+ | sp_swap: (x,y:A)(p:A*A)(symprod A A R R (x,y) p)->(swapprod (y,x) p).
+End Swap.
+
+
+Section Lexicographic_Exponentiation.
+
+Variable A : Set.
+Variable leA : A->A->Prop.
+Local Nil := (nil A).
+Local List := (list A).
+
+Inductive Ltl : List->List->Prop :=
+ Lt_nil: (a:A)(x:List)(Ltl Nil (cons a x))
+| Lt_hd : (a,b:A) (leA a b)-> (x,y:(list A))(Ltl (cons a x) (cons b y))
+| Lt_tl : (a:A)(x,y:List)(Ltl x y) -> (Ltl (cons a x) (cons a y)).
+
+
+Inductive Desc : List->Prop :=
+ d_nil : (Desc Nil)
+| d_one : (x:A)(Desc (cons x Nil))
+| d_conc : (x,y:A)(l:List)(leA x y)
+ -> (Desc l^(cons y Nil))->(Desc (l^(cons y Nil))^(cons x Nil)).
+
+Definition Pow :Set := (sig List Desc).
+
+Definition lex_exp : Pow -> Pow ->Prop :=
+ [a,b:Pow](Ltl (proj1_sig List Desc a) (proj1_sig List Desc b)).
+
+End Lexicographic_Exponentiation.
+
+Hints Unfold transp union : sets v62.
+Hints Resolve t_step rt_step rt_refl rst_step rst_refl : sets v62.
+Hints Immediate rst_sym : sets v62.