summaryrefslogtreecommitdiff
path: root/theories7/Reals/Sqrt_reg.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Sqrt_reg.v')
-rw-r--r--theories7/Reals/Sqrt_reg.v297
1 files changed, 0 insertions, 297 deletions
diff --git a/theories7/Reals/Sqrt_reg.v b/theories7/Reals/Sqrt_reg.v
deleted file mode 100644
index d2068e5d..00000000
--- a/theories7/Reals/Sqrt_reg.v
+++ /dev/null
@@ -1,297 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Sqrt_reg.v,v 1.1.2.1 2004/07/16 19:31:36 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require Ranalysis1.
-Require R_sqrt.
-V7only [Import R_scope.]. Open Local Scope R_scope.
-
-(**********)
-Lemma sqrt_var_maj : (h:R) ``(Rabsolu h) <= 1`` -> ``(Rabsolu ((sqrt (1+h))-1))<=(Rabsolu h)``.
-Intros; Cut ``0<=1+h``.
-Intro; Apply Rle_trans with ``(Rabsolu ((sqrt (Rsqr (1+h)))-1))``.
-Case (total_order_T h R0); Intro.
-Elim s; Intro.
-Repeat Rewrite Rabsolu_left.
-Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-1``).
-Do 2 Rewrite Ropp_distr1;Rewrite Ropp_Ropp; Apply Rle_compatibility.
-Apply Rle_Ropp1; Apply sqrt_le_1.
-Apply pos_Rsqr.
-Apply H0.
-Pattern 2 ``1+h``; Rewrite <- Rmult_1r; Unfold Rsqr; Apply Rle_monotony.
-Apply H0.
-Pattern 2 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Assumption.
-Apply Rlt_anti_compatibility with R1; Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
-Pattern 2 R1; Rewrite <- sqrt_1; Apply sqrt_lt_1.
-Apply pos_Rsqr.
-Left; Apply Rlt_R0_R1.
-Pattern 2 R1; Rewrite <- Rsqr_1; Apply Rsqr_incrst_1.
-Pattern 2 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption.
-Apply H0.
-Left; Apply Rlt_R0_R1.
-Apply Rlt_anti_compatibility with R1; Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
-Pattern 2 R1; Rewrite <- sqrt_1; Apply sqrt_lt_1.
-Apply H0.
-Left; Apply Rlt_R0_R1.
-Pattern 2 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption.
-Rewrite b; Rewrite Rplus_Or; Rewrite Rsqr_1; Rewrite sqrt_1; Right; Reflexivity.
-Repeat Rewrite Rabsolu_right.
-Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-1``); Apply Rle_compatibility.
-Apply sqrt_le_1.
-Apply H0.
-Apply pos_Rsqr.
-Pattern 1 ``1+h``; Rewrite <- Rmult_1r; Unfold Rsqr; Apply Rle_monotony.
-Apply H0.
-Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Assumption.
-Apply Rle_sym1; Apply Rle_anti_compatibility with R1.
-Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
-Pattern 1 R1; Rewrite <- sqrt_1; Apply sqrt_le_1.
-Left; Apply Rlt_R0_R1.
-Apply pos_Rsqr.
-Pattern 1 R1; Rewrite <- Rsqr_1; Apply Rsqr_incr_1.
-Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Assumption.
-Left; Apply Rlt_R0_R1.
-Apply H0.
-Apply Rle_sym1; Left; Apply Rlt_anti_compatibility with R1.
-Rewrite Rplus_Or; Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
-Pattern 1 R1; Rewrite <- sqrt_1; Apply sqrt_lt_1.
-Left; Apply Rlt_R0_R1.
-Apply H0.
-Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rlt_compatibility; Assumption.
-Rewrite sqrt_Rsqr.
-Replace ``(1+h)-1`` with h; [Right; Reflexivity | Ring].
-Apply H0.
-Case (total_order_T h R0); Intro.
-Elim s; Intro.
-Rewrite (Rabsolu_left h a) in H.
-Apply Rle_anti_compatibility with ``-h``.
-Rewrite Rplus_Or; Rewrite Rplus_sym; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Exact H.
-Left; Rewrite b; Rewrite Rplus_Or; Apply Rlt_R0_R1.
-Left; Apply gt0_plus_gt0_is_gt0.
-Apply Rlt_R0_R1.
-Apply r.
-Qed.
-
-(* sqrt is continuous in 1 *)
-Lemma sqrt_continuity_pt_R1 : (continuity_pt sqrt R1).
-Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
-Pose alpha := (Rmin eps R1).
-Exists alpha; Intros.
-Split.
-Unfold alpha; Unfold Rmin; Case (total_order_Rle eps R1); Intro.
-Assumption.
-Apply Rlt_R0_R1.
-Intros; Elim H0; Intros.
-Rewrite sqrt_1; Replace x with ``1+(x-1)``; [Idtac | Ring]; Apply Rle_lt_trans with ``(Rabsolu (x-1))``.
-Apply sqrt_var_maj.
-Apply Rle_trans with alpha.
-Left; Apply H2.
-Unfold alpha; Apply Rmin_r.
-Apply Rlt_le_trans with alpha; [Apply H2 | Unfold alpha; Apply Rmin_l].
-Qed.
-
-(* sqrt is continuous forall x>0 *)
-Lemma sqrt_continuity_pt : (x:R) ``0<x`` -> (continuity_pt sqrt x).
-Intros; Generalize sqrt_continuity_pt_R1.
-Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Intros.
-Cut ``0<eps/(sqrt x)``.
-Intro; Elim (H0 ? H2); Intros alp_1 H3.
-Elim H3; Intros.
-Pose alpha := ``alp_1*x``.
-Exists (Rmin alpha x); Intros.
-Split.
-Change ``0<(Rmin alpha x)``; Unfold Rmin; Case (total_order_Rle alpha x); Intro.
-Unfold alpha; Apply Rmult_lt_pos; Assumption.
-Apply H.
-Intros; Replace x0 with ``x+(x0-x)``; [Idtac | Ring]; Replace ``(sqrt (x+(x0-x)))-(sqrt x)`` with ``(sqrt x)*((sqrt (1+(x0-x)/x))-(sqrt 1))``.
-Rewrite Rabsolu_mult; Rewrite (Rabsolu_right (sqrt x)).
-Apply Rlt_monotony_contra with ``/(sqrt x)``.
-Apply Rlt_Rinv; Apply sqrt_lt_R0; Assumption.
-Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l; Rewrite Rmult_sym.
-Unfold Rdiv in H5.
-Case (Req_EM x x0); Intro.
-Rewrite H7; Unfold Rminus Rdiv; Rewrite Rplus_Ropp_r; Rewrite Rmult_Ol; Rewrite Rplus_Or; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0.
-Apply Rmult_lt_pos.
-Assumption.
-Apply Rlt_Rinv; Rewrite <- H7; Apply sqrt_lt_R0; Assumption.
-Apply H5.
-Split.
-Unfold D_x no_cond.
-Split.
-Trivial.
-Red; Intro.
-Cut ``(x0-x)*/x==0``.
-Intro.
-Elim (without_div_Od ? ? H9); Intro.
-Elim H7.
-Apply (Rminus_eq_right ? ? H10).
-Assert H11 := (without_div_Oi1 ? x H10).
-Rewrite <- Rinv_l_sym in H11.
-Elim R1_neq_R0; Exact H11.
-Red; Intro; Rewrite H12 in H; Elim (Rlt_antirefl ? H).
-Symmetry; Apply r_Rplus_plus with R1; Rewrite Rplus_Or; Unfold Rdiv in H8; Exact H8.
-Unfold Rminus; Rewrite Rplus_sym; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Elim H6; Intros.
-Unfold Rdiv; Rewrite Rabsolu_mult.
-Rewrite Rabsolu_Rinv.
-Rewrite (Rabsolu_right x).
-Rewrite Rmult_sym; Apply Rlt_monotony_contra with x.
-Apply H.
-Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1l; Rewrite Rmult_sym; Fold alpha.
-Apply Rlt_le_trans with (Rmin alpha x).
-Apply H9.
-Apply Rmin_l.
-Red; Intro; Rewrite H10 in H; Elim (Rlt_antirefl ? H).
-Apply Rle_sym1; Left; Apply H.
-Red; Intro; Rewrite H10 in H; Elim (Rlt_antirefl ? H).
-Assert H7 := (sqrt_lt_R0 x H).
-Red; Intro; Rewrite H8 in H7; Elim (Rlt_antirefl ? H7).
-Apply Rle_sym1; Apply sqrt_positivity.
-Left; Apply H.
-Unfold Rminus; Rewrite Rmult_Rplus_distr; Rewrite Ropp_mul3; Repeat Rewrite <- sqrt_times.
-Rewrite Rmult_1r; Rewrite Rmult_Rplus_distr; Rewrite Rmult_1r; Unfold Rdiv; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r; Reflexivity.
-Red; Intro; Rewrite H7 in H; Elim (Rlt_antirefl ? H).
-Left; Apply H.
-Left; Apply Rlt_R0_R1.
-Left; Apply H.
-Elim H6; Intros.
-Case (case_Rabsolu ``x0-x``); Intro.
-Rewrite (Rabsolu_left ``x0-x`` r) in H8.
-Rewrite Rplus_sym.
-Apply Rle_anti_compatibility with ``-((x0-x)/x)``.
-Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Unfold Rdiv; Rewrite <- Ropp_mul1.
-Apply Rle_monotony_contra with x.
-Apply H.
-Rewrite Rmult_1r; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r; Left; Apply Rlt_le_trans with (Rmin alpha x).
-Apply H8.
-Apply Rmin_r.
-Red; Intro; Rewrite H9 in H; Elim (Rlt_antirefl ? H).
-Apply ge0_plus_ge0_is_ge0.
-Left; Apply Rlt_R0_R1.
-Unfold Rdiv; Apply Rmult_le_pos.
-Apply Rle_sym2; Exact r.
-Left; Apply Rlt_Rinv; Apply H.
-Unfold Rdiv; Apply Rmult_lt_pos.
-Apply H1.
-Apply Rlt_Rinv; Apply sqrt_lt_R0; Apply H.
-Qed.
-
-(* sqrt is derivable for all x>0 *)
-Lemma derivable_pt_lim_sqrt : (x:R) ``0<x`` -> (derivable_pt_lim sqrt x ``/(2*(sqrt x))``).
-Intros; Pose g := [h:R]``(sqrt x)+(sqrt (x+h))``.
-Cut (continuity_pt g R0).
-Intro; Cut ``(g 0)<>0``.
-Intro; Assert H2 := (continuity_pt_inv g R0 H0 H1).
-Unfold derivable_pt_lim; Intros; Unfold continuity_pt in H2; Unfold continue_in in H2; Unfold limit1_in in H2; Unfold limit_in in H2; Simpl in H2; Unfold R_dist in H2.
-Elim (H2 eps H3); Intros alpha H4.
-Elim H4; Intros.
-Pose alpha1 := (Rmin alpha x).
-Cut ``0<alpha1``.
-Intro; Exists (mkposreal alpha1 H7); Intros.
-Replace ``((sqrt (x+h))-(sqrt x))/h`` with ``/((sqrt x)+(sqrt (x+h)))``.
-Unfold inv_fct g in H6; Replace ``2*(sqrt x)`` with ``(sqrt x)+(sqrt (x+0))``.
-Apply H6.
-Split.
-Unfold D_x no_cond.
-Split.
-Trivial.
-Apply not_sym; Exact H8.
-Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Apply Rlt_le_trans with alpha1.
-Exact H9.
-Unfold alpha1; Apply Rmin_l.
-Rewrite Rplus_Or; Ring.
-Cut ``0<=x+h``.
-Intro; Cut ``0<(sqrt x)+(sqrt (x+h))``.
-Intro; Apply r_Rmult_mult with ``((sqrt x)+(sqrt (x+h)))``.
-Rewrite <- Rinv_r_sym.
-Rewrite Rplus_sym; Unfold Rdiv; Rewrite <- Rmult_assoc; Rewrite Rsqr_plus_minus; Repeat Rewrite Rsqr_sqrt.
-Rewrite Rplus_sym; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Rewrite <- Rinv_r_sym.
-Reflexivity.
-Apply H8.
-Left; Apply H.
-Assumption.
-Red; Intro; Rewrite H12 in H11; Elim (Rlt_antirefl ? H11).
-Red; Intro; Rewrite H12 in H11; Elim (Rlt_antirefl ? H11).
-Apply gt0_plus_ge0_is_gt0.
-Apply sqrt_lt_R0; Apply H.
-Apply sqrt_positivity; Apply H10.
-Case (case_Rabsolu h); Intro.
-Rewrite (Rabsolu_left h r) in H9.
-Apply Rle_anti_compatibility with ``-h``.
-Rewrite Rplus_Or; Rewrite Rplus_sym; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Left; Apply Rlt_le_trans with alpha1.
-Apply H9.
-Unfold alpha1; Apply Rmin_r.
-Apply ge0_plus_ge0_is_ge0.
-Left; Assumption.
-Apply Rle_sym2; Apply r.
-Unfold alpha1; Unfold Rmin; Case (total_order_Rle alpha x); Intro.
-Apply H5.
-Apply H.
-Unfold g; Rewrite Rplus_Or.
-Cut ``0<(sqrt x)+(sqrt x)``.
-Intro; Red; Intro; Rewrite H2 in H1; Elim (Rlt_antirefl ? H1).
-Apply gt0_plus_gt0_is_gt0; Apply sqrt_lt_R0; Apply H.
-Replace g with (plus_fct (fct_cte (sqrt x)) (comp sqrt (plus_fct (fct_cte x) id))); [Idtac | Reflexivity].
-Apply continuity_pt_plus.
-Apply continuity_pt_const; Unfold constant fct_cte; Intro; Reflexivity.
-Apply continuity_pt_comp.
-Apply continuity_pt_plus.
-Apply continuity_pt_const; Unfold constant fct_cte; Intro; Reflexivity.
-Apply derivable_continuous_pt; Apply derivable_pt_id.
-Apply sqrt_continuity_pt.
-Unfold plus_fct fct_cte id; Rewrite Rplus_Or; Apply H.
-Qed.
-
-(**********)
-Lemma derivable_pt_sqrt : (x:R) ``0<x`` -> (derivable_pt sqrt x).
-Unfold derivable_pt; Intros.
-Apply Specif.existT with ``/(2*(sqrt x))``.
-Apply derivable_pt_lim_sqrt; Assumption.
-Qed.
-
-(**********)
-Lemma derive_pt_sqrt : (x:R;pr:``0<x``) ``(derive_pt sqrt x (derivable_pt_sqrt ? pr)) == /(2*(sqrt x))``.
-Intros.
-Apply derive_pt_eq_0.
-Apply derivable_pt_lim_sqrt; Assumption.
-Qed.
-
-(* We show that sqrt is continuous for all x>=0 *)
-(* Remark : by definition of sqrt (as extension of Rsqrt on |R), *)
-(* we could also show that sqrt is continuous for all x *)
-Lemma continuity_pt_sqrt : (x:R) ``0<=x`` -> (continuity_pt sqrt x).
-Intros; Case (total_order R0 x); Intro.
-Apply (sqrt_continuity_pt x H0).
-Elim H0; Intro.
-Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros.
-Exists (Rsqr eps); Intros.
-Split.
-Change ``0<(Rsqr eps)``; Apply Rsqr_pos_lt.
-Red; Intro; Rewrite H3 in H2; Elim (Rlt_antirefl ? H2).
-Intros; Elim H3; Intros.
-Rewrite <- H1; Rewrite sqrt_0; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite <- H1 in H5; Unfold Rminus in H5; Rewrite Ropp_O in H5; Rewrite Rplus_Or in H5.
-Case (case_Rabsolu x0); Intro.
-Unfold sqrt; Case (case_Rabsolu x0); Intro.
-Rewrite Rabsolu_R0; Apply H2.
-Assert H6 := (Rle_sym2 ? ? r0); Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H6 r)).
-Rewrite Rabsolu_right.
-Apply Rsqr_incrst_0.
-Rewrite Rsqr_sqrt.
-Rewrite (Rabsolu_right x0 r) in H5; Apply H5.
-Apply Rle_sym2; Exact r.
-Apply sqrt_positivity; Apply Rle_sym2; Exact r.
-Left; Exact H2.
-Apply Rle_sym1; Apply sqrt_positivity; Apply Rle_sym2; Exact r.
-Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H1 H)).
-Qed.