summaryrefslogtreecommitdiff
path: root/theories7/Reals/SeqSeries.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/SeqSeries.v')
-rw-r--r--theories7/Reals/SeqSeries.v307
1 files changed, 307 insertions, 0 deletions
diff --git a/theories7/Reals/SeqSeries.v b/theories7/Reals/SeqSeries.v
new file mode 100644
index 00000000..dd93c304
--- /dev/null
+++ b/theories7/Reals/SeqSeries.v
@@ -0,0 +1,307 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: SeqSeries.v,v 1.1.2.1 2004/07/16 19:31:36 herbelin Exp $ i*)
+
+Require Rbase.
+Require Rfunctions.
+Require Max.
+Require Export Rseries.
+Require Export SeqProp.
+Require Export Rcomplete.
+Require Export PartSum.
+Require Export AltSeries.
+Require Export Binomial.
+Require Export Rsigma.
+Require Export Rprod.
+Require Export Cauchy_prod.
+Require Export Alembert.
+V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
+Open Local Scope R_scope.
+
+(**********)
+Lemma sum_maj1 : (fn:nat->R->R;An:nat->R;x,l1,l2:R;N:nat) (Un_cv [n:nat](SP fn n x) l1) -> (Un_cv [n:nat](sum_f_R0 An n) l2) -> ((n:nat)``(Rabsolu (fn n x))<=(An n)``) -> ``(Rabsolu (l1-(SP fn N x)))<=l2-(sum_f_R0 An N)``.
+Intros; Cut (sigTT R [l:R](Un_cv [n:nat](sum_f_R0 [l:nat](fn (plus (S N) l) x) n) l)).
+Intro; Cut (sigTT R [l:R](Un_cv [n:nat](sum_f_R0 [l:nat](An (plus (S N) l)) n) l)).
+Intro; Elim X; Intros l1N H2.
+Elim X0; Intros l2N H3.
+Cut ``l1-(SP fn N x)==l1N``.
+Intro; Cut ``l2-(sum_f_R0 An N)==l2N``.
+Intro; Rewrite H4; Rewrite H5.
+Apply sum_cv_maj with [l:nat](An (plus (S N) l)) [l:nat][x:R](fn (plus (S N) l) x) x.
+Unfold SP; Apply H2.
+Apply H3.
+Intros; Apply H1.
+Symmetry; EApply UL_sequence.
+Apply H3.
+Unfold Un_cv in H0; Unfold Un_cv; Intros; Elim (H0 eps H5); Intros N0 H6.
+Unfold R_dist in H6; Exists N0; Intros.
+Unfold R_dist; Replace (Rminus (sum_f_R0 [l:nat](An (plus (S N) l)) n) (Rminus l2 (sum_f_R0 An N))) with (Rminus (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) l2); [Idtac | Ring].
+Replace (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) with (sum_f_R0 An (S (plus N n))).
+Apply H6; Unfold ge; Apply le_trans with n.
+Apply H7.
+Apply le_trans with (plus N n).
+Apply le_plus_r.
+Apply le_n_Sn.
+Cut (le O N).
+Cut (lt N (S (plus N n))).
+Intros; Assert H10 := (sigma_split An H9 H8).
+Unfold sigma in H10.
+Do 2 Rewrite <- minus_n_O in H10.
+Replace (sum_f_R0 An (S (plus N n))) with (sum_f_R0 [k:nat](An (plus (0) k)) (S (plus N n))).
+Replace (sum_f_R0 An N) with (sum_f_R0 [k:nat](An (plus (0) k)) N).
+Cut (minus (S (plus N n)) (S N))=n.
+Intro; Rewrite H11 in H10.
+Apply H10.
+Apply INR_eq; Rewrite minus_INR.
+Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
+Apply le_n_S; Apply le_plus_l.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply le_lt_n_Sm; Apply le_plus_l.
+Apply le_O_n.
+Symmetry; EApply UL_sequence.
+Apply H2.
+Unfold Un_cv in H; Unfold Un_cv; Intros.
+Elim (H eps H4); Intros N0 H5.
+Unfold R_dist in H5; Exists N0; Intros.
+Unfold R_dist SP; Replace (Rminus (sum_f_R0 [l:nat](fn (plus (S N) l) x) n) (Rminus l1 (sum_f_R0 [k:nat](fn k x) N))) with (Rminus (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) l1); [Idtac | Ring].
+Replace (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) with (sum_f_R0 [k:nat](fn k x) (S (plus N n))).
+Unfold SP in H5; Apply H5; Unfold ge; Apply le_trans with n.
+Apply H6.
+Apply le_trans with (plus N n).
+Apply le_plus_r.
+Apply le_n_Sn.
+Cut (le O N).
+Cut (lt N (S (plus N n))).
+Intros; Assert H9 := (sigma_split [k:nat](fn k x) H8 H7).
+Unfold sigma in H9.
+Do 2 Rewrite <- minus_n_O in H9.
+Replace (sum_f_R0 [k:nat](fn k x) (S (plus N n))) with (sum_f_R0 [k:nat](fn (plus (0) k) x) (S (plus N n))).
+Replace (sum_f_R0 [k:nat](fn k x) N) with (sum_f_R0 [k:nat](fn (plus (0) k) x) N).
+Cut (minus (S (plus N n)) (S N))=n.
+Intro; Rewrite H10 in H9.
+Apply H9.
+Apply INR_eq; Rewrite minus_INR.
+Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
+Apply le_n_S; Apply le_plus_l.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply le_lt_n_Sm.
+Apply le_plus_l.
+Apply le_O_n.
+Apply existTT with ``l2-(sum_f_R0 An N)``.
+Unfold Un_cv in H0; Unfold Un_cv; Intros.
+Elim (H0 eps H2); Intros N0 H3.
+Unfold R_dist in H3; Exists N0; Intros.
+Unfold R_dist; Replace (Rminus (sum_f_R0 [l:nat](An (plus (S N) l)) n) (Rminus l2 (sum_f_R0 An N))) with (Rminus (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) l2); [Idtac | Ring].
+Replace (Rplus (sum_f_R0 An N) (sum_f_R0 [l:nat](An (plus (S N) l)) n)) with (sum_f_R0 An (S (plus N n))).
+Apply H3; Unfold ge; Apply le_trans with n.
+Apply H4.
+Apply le_trans with (plus N n).
+Apply le_plus_r.
+Apply le_n_Sn.
+Cut (le O N).
+Cut (lt N (S (plus N n))).
+Intros; Assert H7 := (sigma_split An H6 H5).
+Unfold sigma in H7.
+Do 2 Rewrite <- minus_n_O in H7.
+Replace (sum_f_R0 An (S (plus N n))) with (sum_f_R0 [k:nat](An (plus (0) k)) (S (plus N n))).
+Replace (sum_f_R0 An N) with (sum_f_R0 [k:nat](An (plus (0) k)) N).
+Cut (minus (S (plus N n)) (S N))=n.
+Intro; Rewrite H8 in H7.
+Apply H7.
+Apply INR_eq; Rewrite minus_INR.
+Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
+Apply le_n_S; Apply le_plus_l.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply le_lt_n_Sm.
+Apply le_plus_l.
+Apply le_O_n.
+Apply existTT with ``l1-(SP fn N x)``.
+Unfold Un_cv in H; Unfold Un_cv; Intros.
+Elim (H eps H2); Intros N0 H3.
+Unfold R_dist in H3; Exists N0; Intros.
+Unfold R_dist SP.
+Replace (Rminus (sum_f_R0 [l:nat](fn (plus (S N) l) x) n) (Rminus l1 (sum_f_R0 [k:nat](fn k x) N))) with (Rminus (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) l1); [Idtac | Ring].
+Replace (Rplus (sum_f_R0 [k:nat](fn k x) N) (sum_f_R0 [l:nat](fn (plus (S N) l) x) n)) with (sum_f_R0 [k:nat](fn k x) (S (plus N n))).
+Unfold SP in H3; Apply H3.
+Unfold ge; Apply le_trans with n.
+Apply H4.
+Apply le_trans with (plus N n).
+Apply le_plus_r.
+Apply le_n_Sn.
+Cut (le O N).
+Cut (lt N (S (plus N n))).
+Intros; Assert H7 := (sigma_split [k:nat](fn k x) H6 H5).
+Unfold sigma in H7.
+Do 2 Rewrite <- minus_n_O in H7.
+Replace (sum_f_R0 [k:nat](fn k x) (S (plus N n))) with (sum_f_R0 [k:nat](fn (plus (0) k) x) (S (plus N n))).
+Replace (sum_f_R0 [k:nat](fn k x) N) with (sum_f_R0 [k:nat](fn (plus (0) k) x) N).
+Cut (minus (S (plus N n)) (S N))=n.
+Intro; Rewrite H8 in H7.
+Apply H7.
+Apply INR_eq; Rewrite minus_INR.
+Do 2 Rewrite S_INR; Rewrite plus_INR; Ring.
+Apply le_n_S; Apply le_plus_l.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply sum_eq; Intros.
+Reflexivity.
+Apply le_lt_n_Sm.
+Apply le_plus_l.
+Apply le_O_n.
+Qed.
+
+(* Comparaison of convergence for series *)
+Lemma Rseries_CV_comp : (An,Bn:nat->R) ((n:nat)``0<=(An n)<=(Bn n)``) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 Bn N) l)) -> (sigTT ? [l:R](Un_cv [N:nat](sum_f_R0 An N) l)).
+Intros; Apply cv_cauchy_2.
+Assert H0 := (cv_cauchy_1 ? X).
+Unfold Cauchy_crit_series; Unfold Cauchy_crit.
+Intros; Elim (H0 eps H1); Intros.
+Exists x; Intros.
+Cut (Rle (R_dist (sum_f_R0 An n) (sum_f_R0 An m)) (R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m))).
+Intro; Apply Rle_lt_trans with (R_dist (sum_f_R0 Bn n) (sum_f_R0 Bn m)).
+Assumption.
+Apply H2; Assumption.
+Assert H5 := (lt_eq_lt_dec n m).
+Elim H5; Intro.
+Elim a; Intro.
+Rewrite (tech2 An n m); [Idtac | Assumption].
+Rewrite (tech2 Bn n m); [Idtac | Assumption].
+Unfold R_dist; Unfold Rminus; Do 2 Rewrite Ropp_distr1; Do 2 Rewrite <- Rplus_assoc; Do 2 Rewrite Rplus_Ropp_r; Do 2 Rewrite Rplus_Ol; Do 2 Rewrite Rabsolu_Ropp; Repeat Rewrite Rabsolu_right.
+Apply sum_Rle; Intros.
+Elim (H (plus (S n) n0)); Intros.
+Apply H8.
+Apply Rle_sym1; Apply cond_pos_sum; Intro.
+Elim (H (plus (S n) n0)); Intros.
+Apply Rle_trans with (An (plus (S n) n0)); Assumption.
+Apply Rle_sym1; Apply cond_pos_sum; Intro.
+Elim (H (plus (S n) n0)); Intros; Assumption.
+Rewrite b; Unfold R_dist; Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Right; Reflexivity.
+Rewrite (tech2 An m n); [Idtac | Assumption].
+Rewrite (tech2 Bn m n); [Idtac | Assumption].
+Unfold R_dist; Unfold Rminus; Do 2 Rewrite Rplus_assoc; Rewrite (Rplus_sym (sum_f_R0 An m)); Rewrite (Rplus_sym (sum_f_R0 Bn m)); Do 2 Rewrite Rplus_assoc; Do 2 Rewrite Rplus_Ropp_l; Do 2 Rewrite Rplus_Or; Repeat Rewrite Rabsolu_right.
+Apply sum_Rle; Intros.
+Elim (H (plus (S m) n0)); Intros; Apply H8.
+Apply Rle_sym1; Apply cond_pos_sum; Intro.
+Elim (H (plus (S m) n0)); Intros.
+Apply Rle_trans with (An (plus (S m) n0)); Assumption.
+Apply Rle_sym1.
+Apply cond_pos_sum; Intro.
+Elim (H (plus (S m) n0)); Intros; Assumption.
+Qed.
+
+(* Cesaro's theorem *)
+Lemma Cesaro : (An,Bn:nat->R;l:R) (Un_cv Bn l) -> ((n:nat)``0<(An n)``) -> (cv_infty [n:nat](sum_f_R0 An n)) -> (Un_cv [n:nat](Rdiv (sum_f_R0 [k:nat]``(An k)*(Bn k)`` n) (sum_f_R0 An n)) l).
+Proof with Trivial.
+Unfold Un_cv; Intros; Assert H3 : (n:nat)``0<(sum_f_R0 An n)``.
+Intro; Apply tech1.
+Assert H4 : (n:nat) ``(sum_f_R0 An n)<>0``.
+Intro; Red; Intro; Assert H5 := (H3 n); Rewrite H4 in H5; Elim (Rlt_antirefl ? H5).
+Assert H5 := (cv_infty_cv_R0 ? H4 H1); Assert H6 : ``0<eps/2``.
+Unfold Rdiv; Apply Rmult_lt_pos.
+Apply Rlt_Rinv; Sup.
+Elim (H ? H6); Clear H; Intros N1 H; Pose C := (Rabsolu (sum_f_R0 [k:nat]``(An k)*((Bn k)-l)`` N1)); Assert H7 : (EX N:nat | (n:nat) (le N n) -> ``C/(sum_f_R0 An n)<eps/2``).
+Case (Req_EM C R0); Intro.
+Exists O; Intros.
+Rewrite H7; Unfold Rdiv; Rewrite Rmult_Ol; Apply Rmult_lt_pos.
+Apply Rlt_Rinv; Sup.
+Assert H8 : ``0<eps/(2*(Rabsolu C))``.
+Unfold Rdiv; Apply Rmult_lt_pos.
+Apply Rlt_Rinv; Apply Rmult_lt_pos.
+Sup.
+Apply Rabsolu_pos_lt.
+Elim (H5 ? H8); Intros; Exists x; Intros; Assert H11 := (H9 ? H10); Unfold R_dist in H11; Unfold Rminus in H11; Rewrite Ropp_O in H11; Rewrite Rplus_Or in H11.
+Apply Rle_lt_trans with (Rabsolu ``C/(sum_f_R0 An n)``).
+Apply Rle_Rabsolu.
+Unfold Rdiv; Rewrite Rabsolu_mult; Apply Rlt_monotony_contra with ``/(Rabsolu C)``.
+Apply Rlt_Rinv; Apply Rabsolu_pos_lt.
+Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
+Rewrite Rmult_1l; Replace ``/(Rabsolu C)*(eps*/2)`` with ``eps/(2*(Rabsolu C))``.
+Unfold Rdiv; Rewrite Rinv_Rmult.
+Ring.
+DiscrR.
+Apply Rabsolu_no_R0.
+Apply Rabsolu_no_R0.
+Elim H7; Clear H7; Intros N2 H7; Pose N := (max N1 N2); Exists (S N); Intros; Unfold R_dist; Replace (Rminus (Rdiv (sum_f_R0 [k:nat]``(An k)*(Bn k)`` n) (sum_f_R0 An n)) l) with (Rdiv (sum_f_R0 [k:nat]``(An k)*((Bn k)-l)`` n) (sum_f_R0 An n)).
+Assert H9 : (lt N1 n).
+Apply lt_le_trans with (S N).
+Apply le_lt_n_Sm; Unfold N; Apply le_max_l.
+Rewrite (tech2 [k:nat]``(An k)*((Bn k)-l)`` ? ? H9); Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Apply Rle_lt_trans with (Rplus (Rabsolu (Rdiv (sum_f_R0 [k:nat]``(An k)*((Bn k)-l)`` N1) (sum_f_R0 An n))) (Rabsolu (Rdiv (sum_f_R0 [i:nat]``(An (plus (S N1) i))*((Bn (plus (S N1) i))-l)`` (minus n (S N1))) (sum_f_R0 An n)))).
+Apply Rabsolu_triang.
+Rewrite (double_var eps); Apply Rplus_lt.
+Unfold Rdiv; Rewrite Rabsolu_mult; Fold C; Rewrite Rabsolu_right.
+Apply (H7 n); Apply le_trans with (S N).
+Apply le_trans with N; [Unfold N; Apply le_max_r | Apply le_n_Sn].
+Apply Rle_sym1; Left; Apply Rlt_Rinv.
+
+Unfold R_dist in H; Unfold Rdiv; Rewrite Rabsolu_mult; Rewrite (Rabsolu_right ``/(sum_f_R0 An n)``).
+Apply Rle_lt_trans with (Rmult (sum_f_R0 [i:nat](Rabsolu ``(An (plus (S N1) i))*((Bn (plus (S N1) i))-l)``) (minus n (S N1))) ``/(sum_f_R0 An n)``).
+Do 2 Rewrite <- (Rmult_sym ``/(sum_f_R0 An n)``); Apply Rle_monotony.
+Left; Apply Rlt_Rinv.
+Apply (sum_Rabsolu [i:nat]``(An (plus (S N1) i))*((Bn (plus (S N1) i))-l)`` (minus n (S N1))).
+Apply Rle_lt_trans with (Rmult (sum_f_R0 [i:nat]``(An (plus (S N1) i))*eps/2`` (minus n (S N1))) ``/(sum_f_R0 An n)``).
+Do 2 Rewrite <- (Rmult_sym ``/(sum_f_R0 An n)``); Apply Rle_monotony.
+Left; Apply Rlt_Rinv.
+Apply sum_Rle; Intros; Rewrite Rabsolu_mult; Pattern 2 (An (plus (S N1) n0)); Rewrite <- (Rabsolu_right (An (plus (S N1) n0))).
+Apply Rle_monotony.
+Apply Rabsolu_pos.
+Left; Apply H; Unfold ge; Apply le_trans with (S N1); [Apply le_n_Sn | Apply le_plus_l].
+Apply Rle_sym1; Left.
+Rewrite <- (scal_sum [i:nat](An (plus (S N1) i)) (minus n (S N1)) ``eps/2``); Unfold Rdiv; Repeat Rewrite Rmult_assoc; Apply Rlt_monotony.
+Pattern 2 ``/2``; Rewrite <- Rmult_1r; Apply Rlt_monotony.
+Apply Rlt_Rinv; Sup.
+Rewrite Rmult_sym; Apply Rlt_monotony_contra with (sum_f_R0 An n).
+Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
+Rewrite Rmult_1l; Rewrite Rmult_1r; Rewrite (tech2 An N1 n).
+Rewrite Rplus_sym; Pattern 1 (sum_f_R0 [i:nat](An (plus (S N1) i)) (minus n (S N1))); Rewrite <- Rplus_Or; Apply Rlt_compatibility.
+Apply Rle_sym1; Left; Apply Rlt_Rinv.
+Replace (sum_f_R0 [k:nat]``(An k)*((Bn k)-l)`` n) with (Rplus (sum_f_R0 [k:nat]``(An k)*(Bn k)`` n) (sum_f_R0 [k:nat]``(An k)*-l`` n)).
+Rewrite <- (scal_sum An n ``-l``); Field.
+Rewrite <- plus_sum; Apply sum_eq; Intros; Ring.
+Qed.
+
+Lemma Cesaro_1 : (An:nat->R;l:R) (Un_cv An l) -> (Un_cv [n:nat]``(sum_f_R0 An (pred n))/(INR n)`` l).
+Proof with Trivial.
+Intros Bn l H; Pose An := [_:nat]R1.
+Assert H0 : (n:nat) ``0<(An n)``.
+Intro; Unfold An; Apply Rlt_R0_R1.
+Assert H1 : (n:nat)``0<(sum_f_R0 An n)``.
+Intro; Apply tech1.
+Assert H2 : (cv_infty [n:nat](sum_f_R0 An n)).
+Unfold cv_infty; Intro; Case (total_order_Rle M R0); Intro.
+Exists O; Intros; Apply Rle_lt_trans with R0.
+Assert H2 : ``0<M``.
+Auto with real.
+Clear n; Pose m := (up M); Elim (archimed M); Intros; Assert H5 : `0<=m`.
+Apply le_IZR; Unfold m; Simpl; Left; Apply Rlt_trans with M.
+Elim (IZN ? H5); Intros; Exists x; Intros; Unfold An; Rewrite sum_cte; Rewrite Rmult_1l; Apply Rlt_trans with (IZR (up M)).
+Apply Rle_lt_trans with (INR x).
+Rewrite INR_IZR_INZ; Fold m; Rewrite <- H6; Right.
+Apply lt_INR; Apply le_lt_n_Sm.
+Assert H3 := (Cesaro ? ? ? H H0 H2).
+Unfold Un_cv; Unfold Un_cv in H3; Intros; Elim (H3 ? H4); Intros; Exists (S x); Intros; Unfold R_dist; Unfold R_dist in H5; Apply Rle_lt_trans with (Rabsolu (Rminus (Rdiv (sum_f_R0 [k:nat]``(An k)*(Bn k)`` (pred n)) (sum_f_R0 An (pred n))) l)).
+Right; Replace ``(sum_f_R0 Bn (pred n))/(INR n)-l`` with (Rminus (Rdiv (sum_f_R0 [k:nat]``(An k)*(Bn k)`` (pred n)) (sum_f_R0 An (pred n))) l).
+Unfold Rminus; Do 2 Rewrite <- (Rplus_sym ``-l``); Apply Rplus_plus_r.
+Unfold An; Replace (sum_f_R0 [k:nat]``1*(Bn k)`` (pred n)) with (sum_f_R0 Bn (pred n)).
+Rewrite sum_cte; Rewrite Rmult_1l; Replace (S (pred n)) with n.
+Apply S_pred with O; Apply lt_le_trans with (S x).
+Apply lt_O_Sn.
+Apply sum_eq; Intros; Ring.
+Apply H5; Unfold ge; Apply le_S_n; Replace (S (pred n)) with n.
+Apply S_pred with O; Apply lt_le_trans with (S x).
+Apply lt_O_Sn.
+Qed.