summaryrefslogtreecommitdiff
path: root/theories7/Reals/Rtrigo_fun.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Rtrigo_fun.v')
-rw-r--r--theories7/Reals/Rtrigo_fun.v118
1 files changed, 0 insertions, 118 deletions
diff --git a/theories7/Reals/Rtrigo_fun.v b/theories7/Reals/Rtrigo_fun.v
deleted file mode 100644
index bc72c0e1..00000000
--- a/theories7/Reals/Rtrigo_fun.v
+++ /dev/null
@@ -1,118 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Rtrigo_fun.v,v 1.1.2.1 2004/07/16 19:31:36 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require SeqSeries.
-V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
-Open Local Scope R_scope.
-
-(*****************************************************************)
-(* To define transcendental functions *)
-(* *)
-(*****************************************************************)
-(*****************************************************************)
-(* For exponential function *)
-(* *)
-(*****************************************************************)
-
-(*********)
-Lemma Alembert_exp:(Un_cv
- [n:nat](Rabsolu (Rmult (Rinv (INR (fact (S n))))
- (Rinv (Rinv (INR (fact n)))))) R0).
-Unfold Un_cv;Intros;Elim (total_order_Rgt eps R1);Intro.
-Split with O;Intros;Rewrite (simpl_fact n);Unfold R_dist;
- Rewrite (minus_R0 (Rabsolu (Rinv (INR (S n)))));
- Rewrite (Rabsolu_Rabsolu (Rinv (INR (S n))));
- Cut (Rgt (Rinv (INR (S n))) R0).
-Intro; Rewrite (Rabsolu_pos_eq (Rinv (INR (S n)))).
-Cut (Rlt (Rminus (Rinv eps) R1) R0).
-Intro;Generalize (Rlt_le_trans (Rminus (Rinv eps) R1) R0 (INR n) H2
- (pos_INR n));Clear H2;Intro;
- Unfold Rminus in H2;Generalize (Rlt_compatibility R1
- (Rplus (Rinv eps) (Ropp R1)) (INR n) H2);
- Replace (Rplus R1 (Rplus (Rinv eps) (Ropp R1))) with (Rinv eps);
- [Clear H2;Intro|Ring].
-Rewrite (Rplus_sym R1 (INR n)) in H2;Rewrite <-(S_INR n) in H2;
- Generalize (Rmult_gt (Rinv (INR (S n))) eps H1 H);Intro;
- Unfold Rgt in H3;
- Generalize (Rlt_monotony (Rmult (Rinv (INR (S n))) eps) (Rinv eps)
- (INR (S n)) H3 H2);Intro;
- Rewrite (Rmult_assoc (Rinv (INR (S n))) eps (Rinv eps)) in H4;
- Rewrite (Rinv_r eps (imp_not_Req eps R0
- (or_intror (Rlt eps R0) (Rgt eps R0) H)))
- in H4;Rewrite (let (H1,H2)=(Rmult_ne (Rinv (INR (S n)))) in H1)
- in H4;Rewrite (Rmult_sym (Rinv (INR (S n)))) in H4;
- Rewrite (Rmult_assoc eps (Rinv (INR (S n))) (INR (S n))) in H4;
- Rewrite (Rinv_l (INR (S n)) (not_O_INR (S n)
- (sym_not_equal nat O (S n) (O_S n)))) in H4;
- Rewrite (let (H1,H2)=(Rmult_ne eps) in H1) in H4;Assumption.
-Apply Rlt_minus;Unfold Rgt in a;Rewrite <- Rinv_R1;
- Apply (Rinv_lt R1 eps);Auto;
- Rewrite (let (H1,H2)=(Rmult_ne eps) in H2);Unfold Rgt in H;Assumption.
-Unfold Rgt in H1;Apply Rlt_le;Assumption.
-Unfold Rgt;Apply Rlt_Rinv; Apply lt_INR_0;Apply lt_O_Sn.
-(**)
-Cut `0<=(up (Rminus (Rinv eps) R1))`.
-Intro;Elim (IZN (up (Rminus (Rinv eps) R1)) H0);Intros;
- Split with x;Intros;Rewrite (simpl_fact n);Unfold R_dist;
- Rewrite (minus_R0 (Rabsolu (Rinv (INR (S n)))));
- Rewrite (Rabsolu_Rabsolu (Rinv (INR (S n))));
- Cut (Rgt (Rinv (INR (S n))) R0).
-Intro; Rewrite (Rabsolu_pos_eq (Rinv (INR (S n)))).
-Cut (Rlt (Rminus (Rinv eps) R1) (INR x)).
-Intro;Generalize (Rlt_le_trans (Rminus (Rinv eps) R1) (INR x) (INR n)
- H4 (le_INR x n ([n,m:nat; H:(ge m n)]H x n H2)));
- Clear H4;Intro;Unfold Rminus in H4;Generalize (Rlt_compatibility R1
- (Rplus (Rinv eps) (Ropp R1)) (INR n) H4);
- Replace (Rplus R1 (Rplus (Rinv eps) (Ropp R1))) with (Rinv eps);
- [Clear H4;Intro|Ring].
-Rewrite (Rplus_sym R1 (INR n)) in H4;Rewrite <-(S_INR n) in H4;
- Generalize (Rmult_gt (Rinv (INR (S n))) eps H3 H);Intro;
- Unfold Rgt in H5;
- Generalize (Rlt_monotony (Rmult (Rinv (INR (S n))) eps) (Rinv eps)
- (INR (S n)) H5 H4);Intro;
- Rewrite (Rmult_assoc (Rinv (INR (S n))) eps (Rinv eps)) in H6;
- Rewrite (Rinv_r eps (imp_not_Req eps R0
- (or_intror (Rlt eps R0) (Rgt eps R0) H)))
- in H6;Rewrite (let (H1,H2)=(Rmult_ne (Rinv (INR (S n)))) in H1)
- in H6;Rewrite (Rmult_sym (Rinv (INR (S n)))) in H6;
- Rewrite (Rmult_assoc eps (Rinv (INR (S n))) (INR (S n))) in H6;
- Rewrite (Rinv_l (INR (S n)) (not_O_INR (S n)
- (sym_not_equal nat O (S n) (O_S n)))) in H6;
- Rewrite (let (H1,H2)=(Rmult_ne eps) in H1) in H6;Assumption.
-Cut (IZR (up (Rminus (Rinv eps) R1)))==(IZR (INZ x));
- [Intro|Rewrite H1;Trivial].
-Elim (archimed (Rminus (Rinv eps) R1));Intros;Clear H6;
- Unfold Rgt in H5;Rewrite H4 in H5;Rewrite INR_IZR_INZ;Assumption.
-Unfold Rgt in H1;Apply Rlt_le;Assumption.
-Unfold Rgt;Apply Rlt_Rinv; Apply lt_INR_0;Apply lt_O_Sn.
-Apply (le_O_IZR (up (Rminus (Rinv eps) R1)));
- Apply (Rle_trans R0 (Rminus (Rinv eps) R1)
- (IZR (up (Rminus (Rinv eps) R1)))).
-Generalize (Rgt_not_le eps R1 b);Clear b;Unfold Rle;Intro;Elim H0;
- Clear H0;Intro.
-Left;Unfold Rgt in H;
- Generalize (Rlt_monotony (Rinv eps) eps R1 (Rlt_Rinv eps H) H0);
- Rewrite (Rinv_l eps (sym_not_eqT R R0 eps
- (imp_not_Req R0 eps (or_introl (Rlt R0 eps) (Rgt R0 eps) H))));
- Rewrite (let (H1,H2)=(Rmult_ne (Rinv eps)) in H1);Intro;
- Fold (Rgt (Rminus (Rinv eps) R1) R0);Apply Rgt_minus;Unfold Rgt;
- Assumption.
-Right;Rewrite H0;Rewrite Rinv_R1;Apply sym_eqT;Apply eq_Rminus;Auto.
-Elim (archimed (Rminus (Rinv eps) R1));Intros;Clear H1;
- Unfold Rgt in H0;Apply Rlt_le;Assumption.
-Qed.
-
-
-
-
-
-