summaryrefslogtreecommitdiff
path: root/theories7/Reals/Rseries.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Rseries.v')
-rw-r--r--theories7/Reals/Rseries.v279
1 files changed, 0 insertions, 279 deletions
diff --git a/theories7/Reals/Rseries.v b/theories7/Reals/Rseries.v
deleted file mode 100644
index a38099dd..00000000
--- a/theories7/Reals/Rseries.v
+++ /dev/null
@@ -1,279 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Rseries.v,v 1.1.2.1 2004/07/16 19:31:35 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require Classical.
-Require Compare.
-V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
-Open Local Scope R_scope.
-
-Implicit Variable Type r:R.
-
-(* classical is needed for [Un_cv_crit] *)
-(*********************************************************)
-(* Definition of sequence and properties *)
-(* *)
-(*********************************************************)
-
-Section sequence.
-
-(*********)
-Variable Un:nat->R.
-
-(*********)
-Fixpoint Rmax_N [N:nat]:R:=
- Cases N of
- O => (Un O)
- |(S n) => (Rmax (Un (S n)) (Rmax_N n))
- end.
-
-(*********)
-Definition EUn:R->Prop:=[r:R](Ex [i:nat] (r==(Un i))).
-
-(*********)
-Definition Un_cv:R->Prop:=[l:R]
- (eps:R)(Rgt eps R0)->(Ex[N:nat](n:nat)(ge n N)->
- (Rlt (R_dist (Un n) l) eps)).
-
-(*********)
-Definition Cauchy_crit:Prop:=(eps:R)(Rgt eps R0)->
- (Ex[N:nat] (n,m:nat)(ge n N)->(ge m N)->
- (Rlt (R_dist (Un n) (Un m)) eps)).
-
-(*********)
-Definition Un_growing:Prop:=(n:nat)(Rle (Un n) (Un (S n))).
-
-(*********)
-Lemma EUn_noempty:(ExT [r:R] (EUn r)).
-Unfold EUn;Split with (Un O);Split with O;Trivial.
-Qed.
-
-(*********)
-Lemma Un_in_EUn:(n:nat)(EUn (Un n)).
-Intro;Unfold EUn;Split with n;Trivial.
-Qed.
-
-(*********)
-Lemma Un_bound_imp:(x:R)((n:nat)(Rle (Un n) x))->(is_upper_bound EUn x).
-Intros;Unfold is_upper_bound;Intros;Unfold EUn in H0;Elim H0;Clear H0;
- Intros;Generalize (H x1);Intro;Rewrite <- H0 in H1;Trivial.
-Qed.
-
-(*********)
-Lemma growing_prop:(n,m:nat)Un_growing->(ge n m)->(Rge (Un n) (Un m)).
-Double Induction n m;Intros.
-Unfold Rge;Right;Trivial.
-ElimType False;Unfold ge in H1;Generalize (le_Sn_O n0);Intro;Auto.
-Cut (ge n0 (0)).
-Generalize H0;Intros;Unfold Un_growing in H0;
- Apply (Rge_trans (Un (S n0)) (Un n0) (Un (0))
- (Rle_sym1 (Un n0) (Un (S n0)) (H0 n0)) (H O H2 H3)).
-Elim n0;Auto.
-Elim (lt_eq_lt_dec n1 n0);Intro y.
-Elim y;Clear y;Intro y.
-Unfold ge in H2;Generalize (le_not_lt n0 n1 (le_S_n n0 n1 H2));Intro;
- ElimType False;Auto.
-Rewrite y;Unfold Rge;Right;Trivial.
-Unfold ge in H0;Generalize (H0 (S n0) H1 (lt_le_S n0 n1 y));Intro;
- Unfold Un_growing in H1;
- Apply (Rge_trans (Un (S n1)) (Un n1) (Un (S n0))
- (Rle_sym1 (Un n1) (Un (S n1)) (H1 n1)) H3).
-Qed.
-
-
-(* classical is needed: [not_all_not_ex] *)
-(*********)
-Lemma Un_cv_crit:Un_growing->(bound EUn)->(ExT [l:R] (Un_cv l)).
-Unfold Un_growing Un_cv;Intros;
- Generalize (complet_weak EUn H0 EUn_noempty);Intro;
- Elim H1;Clear H1;Intros;Split with x;Intros;
- Unfold is_lub in H1;Unfold bound in H0;Unfold is_upper_bound in H0 H1;
- Elim H0;Clear H0;Intros;Elim H1;Clear H1;Intros;
- Generalize (H3 x0 H0);Intro;Cut (n:nat)(Rle (Un n) x);Intro.
-Cut (Ex [N:nat] (Rlt (Rminus x eps) (Un N))).
-Intro;Elim H6;Clear H6;Intros;Split with x1.
-Intros;Unfold R_dist;Apply (Rabsolu_def1 (Rminus (Un n) x) eps).
-Unfold Rgt in H2;
- Apply (Rle_lt_trans (Rminus (Un n) x) R0 eps
- (Rle_minus (Un n) x (H5 n)) H2).
-Fold Un_growing in H;Generalize (growing_prop n x1 H H7);Intro;
- Generalize (Rlt_le_trans (Rminus x eps) (Un x1) (Un n) H6
- (Rle_sym2 (Un x1) (Un n) H8));Intro;
- Generalize (Rlt_compatibility (Ropp x) (Rminus x eps) (Un n) H9);
- Unfold Rminus;Rewrite <-(Rplus_assoc (Ropp x) x (Ropp eps));
- Rewrite (Rplus_sym (Ropp x) (Un n));Fold (Rminus (Un n) x);
- Rewrite Rplus_Ropp_l;Rewrite (let (H1,H2)=(Rplus_ne (Ropp eps)) in H2);
- Trivial.
-Cut ~((N:nat)(Rge (Rminus x eps) (Un N))).
-Intro;Apply (not_all_not_ex nat ([N:nat](Rlt (Rminus x eps) (Un N))));
- Red;Intro;Red in H6;Elim H6;Clear H6;Intro;
- Apply (Rlt_not_ge (Rminus x eps) (Un N) (H7 N)).
-Red;Intro;Cut (N:nat)(Rle (Un N) (Rminus x eps)).
-Intro;Generalize (Un_bound_imp (Rminus x eps) H7);Intro;
- Unfold is_upper_bound in H8;Generalize (H3 (Rminus x eps) H8);Intro;
- Generalize (Rle_minus x (Rminus x eps) H9);Unfold Rminus;
- Rewrite Ropp_distr1;Rewrite <- Rplus_assoc;Rewrite Rplus_Ropp_r;
- Rewrite (let (H1,H2)=(Rplus_ne (Ropp (Ropp eps))) in H2);
- Rewrite Ropp_Ropp;Intro;Unfold Rgt in H2;
- Generalize (Rle_not eps R0 H2);Intro;Auto.
-Intro;Elim (H6 N);Intro;Unfold Rle.
-Left;Unfold Rgt in H7;Assumption.
-Right;Auto.
-Apply (H1 (Un n) (Un_in_EUn n)).
-Qed.
-
-(*********)
-Lemma finite_greater:(N:nat)(ExT [M:R] (n:nat)(le n N)->(Rle (Un n) M)).
-Intro;Induction N.
-Split with (Un O);Intros;Rewrite (le_n_O_eq n H);
- Apply (eq_Rle (Un (n)) (Un (n)) (refl_eqT R (Un (n)))).
-Elim HrecN;Clear HrecN;Intros;Split with (Rmax (Un (S N)) x);Intros;
- Elim (Rmax_Rle (Un (S N)) x (Un n));Intros;Clear H1;Inversion H0.
-Rewrite <-H1;Rewrite <-H1 in H2;
- Apply (H2 (or_introl (Rle (Un n) (Un n)) (Rle (Un n) x)
- (eq_Rle (Un n) (Un n) (refl_eqT R (Un n))))).
-Apply (H2 (or_intror (Rle (Un n) (Un (S N))) (Rle (Un n) x)
- (H n H3))).
-Qed.
-
-(*********)
-Lemma cauchy_bound:Cauchy_crit->(bound EUn).
-Unfold Cauchy_crit bound;Intros;Unfold is_upper_bound;
- Unfold Rgt in H;Elim (H R1 Rlt_R0_R1);Clear H;Intros;
- Generalize (H x);Intro;Generalize (le_dec x);Intro;
- Elim (finite_greater x);Intros;Split with (Rmax x0 (Rplus (Un x) R1));
- Clear H;Intros;Unfold EUn in H;Elim H;Clear H;Intros;Elim (H1 x2);
- Clear H1;Intro y.
-Unfold ge in H0;Generalize (H0 x2 (le_n x) y);Clear H0;Intro;
- Rewrite <- H in H0;Unfold R_dist in H0;
- Elim (Rabsolu_def2 (Rminus (Un x) x1) R1 H0);Clear H0;Intros;
- Elim (Rmax_Rle x0 (Rplus (Un x) R1) x1);Intros;Apply H4;Clear H3 H4;
- Right;Clear H H0 y;Apply (Rlt_le x1 (Rplus (Un x) R1));
- Generalize (Rlt_minus (Ropp R1) (Rminus (Un x) x1) H1);Clear H1;
- Intro;Apply (Rminus_lt x1 (Rplus (Un x) R1));
- Cut (Rminus (Ropp R1) (Rminus (Un x) x1))==
- (Rminus x1 (Rplus (Un x) R1));[Intro;Rewrite H0 in H;Assumption|Ring].
-Generalize (H2 x2 y);Clear H2 H0;Intro;Rewrite<-H in H0;
- Elim (Rmax_Rle x0 (Rplus (Un x) R1) x1);Intros;Clear H1;Apply H2;
- Left;Assumption.
-Qed.
-
-End sequence.
-
-(*****************************************************************)
-(* Definition of Power Series and properties *)
-(* *)
-(*****************************************************************)
-
-Section Isequence.
-
-(*********)
-Variable An:nat->R.
-
-(*********)
-Definition Pser:R->R->Prop:=[x,l:R]
- (infinit_sum [n:nat](Rmult (An n) (pow x n)) l).
-
-End Isequence.
-
-Lemma GP_infinite:
- (x:R) (Rlt (Rabsolu x) R1)
- -> (Pser ([n:nat] R1) x (Rinv(Rminus R1 x))).
-Intros;Unfold Pser; Unfold infinit_sum;Intros;Elim (Req_EM x R0).
-Intros;Exists O; Intros;Rewrite H1;Rewrite minus_R0;Rewrite Rinv_R1;
- Cut (sum_f_R0 [n0:nat](Rmult R1 (pow R0 n0)) n)==R1.
-Intros; Rewrite H3;Rewrite R_dist_eq;Auto.
-Elim n; Simpl.
-Ring.
-Intros;Rewrite H3;Ring.
-Intro;Cut (Rlt R0
- (Rmult eps (Rmult (Rabsolu (Rminus R1 x))
- (Rabsolu (Rinv x))))).
-Intro;Elim (pow_lt_1_zero x H
- (Rmult eps (Rmult (Rabsolu (Rminus R1 x))
- (Rabsolu (Rinv x))))
- H2);Intro N; Intros;Exists N; Intros;
- Cut (sum_f_R0 [n0:nat](Rmult R1 (pow x n0)) n)==
- (sum_f_R0 [n0:nat](pow x n0) n).
-Intros; Rewrite H5;Apply (Rlt_monotony_rev
- (Rabsolu (Rminus R1 x))
- (R_dist (sum_f_R0 [n0:nat](pow x n0) n)
- (Rinv (Rminus R1 x)))
- eps).
-Apply Rabsolu_pos_lt.
-Apply Rminus_eq_contra.
-Apply imp_not_Req.
-Right; Unfold Rgt.
-Apply (Rle_lt_trans x (Rabsolu x) R1).
-Apply Rle_Rabsolu.
-Assumption.
-Unfold R_dist; Rewrite <- Rabsolu_mult.
-Rewrite Rminus_distr.
-Cut (Rmult (Rminus R1 x) (sum_f_R0 [n0:nat](pow x n0) n))==
- (Ropp (Rmult(sum_f_R0 [n0:nat](pow x n0) n)
- (Rminus x R1))).
-Intro; Rewrite H6.
-Rewrite GP_finite.
-Rewrite Rinv_r.
-Cut (Rminus (Ropp (Rminus (pow x (plus n (1))) R1)) R1)==
- (Ropp (pow x (plus n (1)))).
-Intro; Rewrite H7.
-Rewrite Rabsolu_Ropp;Cut (plus n (S O))=(S n);Auto.
-Intro H8;Rewrite H8;Simpl;Rewrite Rabsolu_mult;
- Apply (Rlt_le_trans (Rmult (Rabsolu x) (Rabsolu (pow x n)))
- (Rmult (Rabsolu x)
- (Rmult eps
- (Rmult (Rabsolu (Rminus R1 x))
- (Rabsolu (Rinv x)))))
- (Rmult (Rabsolu (Rminus R1 x)) eps)).
-Apply Rlt_monotony.
-Apply Rabsolu_pos_lt.
-Assumption.
-Auto.
-Cut (Rmult (Rabsolu x)
- (Rmult eps (Rmult (Rabsolu (Rminus R1 x))
- (Rabsolu (Rinv x)))))==
- (Rmult (Rmult (Rabsolu x) (Rabsolu (Rinv x)))
- (Rmult eps (Rabsolu (Rminus R1 x)))).
-Clear H8;Intros; Rewrite H8;Rewrite <- Rabsolu_mult;Rewrite Rinv_r.
-Rewrite Rabsolu_R1;Cut (Rmult R1 (Rmult eps (Rabsolu (Rminus R1 x))))==
- (Rmult (Rabsolu (Rminus R1 x)) eps).
-Intros; Rewrite H9;Unfold Rle; Right; Reflexivity.
-Ring.
-Assumption.
-Ring.
-Ring.
-Ring.
-Apply Rminus_eq_contra.
-Apply imp_not_Req.
-Right; Unfold Rgt.
-Apply (Rle_lt_trans x (Rabsolu x) R1).
-Apply Rle_Rabsolu.
-Assumption.
-Ring; Ring.
-Elim n; Simpl.
-Ring.
-Intros; Rewrite H5.
-Ring.
-Apply Rmult_lt_pos.
-Auto.
-Apply Rmult_lt_pos.
-Apply Rabsolu_pos_lt.
-Apply Rminus_eq_contra.
-Apply imp_not_Req.
-Right; Unfold Rgt.
-Apply (Rle_lt_trans x (Rabsolu x) R1).
-Apply Rle_Rabsolu.
-Assumption.
-Apply Rabsolu_pos_lt.
-Apply Rinv_neq_R0.
-Assumption.
-Qed.