summaryrefslogtreecommitdiff
path: root/theories7/Reals/Rprod.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Rprod.v')
-rw-r--r--theories7/Reals/Rprod.v164
1 files changed, 164 insertions, 0 deletions
diff --git a/theories7/Reals/Rprod.v b/theories7/Reals/Rprod.v
new file mode 100644
index 00000000..a524a915
--- /dev/null
+++ b/theories7/Reals/Rprod.v
@@ -0,0 +1,164 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Rprod.v,v 1.1.2.1 2004/07/16 19:31:35 herbelin Exp $ i*)
+
+Require Compare.
+Require Rbase.
+Require Rfunctions.
+Require Rseries.
+Require PartSum.
+Require Binomial.
+V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
+Open Local Scope R_scope.
+
+(* TT Ak; 1<=k<=N *)
+Fixpoint prod_f_SO [An:nat->R;N:nat] : R := Cases N of
+ O => R1
+| (S p) => ``(prod_f_SO An p)*(An (S p))``
+end.
+
+(**********)
+Lemma prod_SO_split : (An:nat->R;n,k:nat) (le k n) -> (prod_f_SO An n)==(Rmult (prod_f_SO An k) (prod_f_SO [l:nat](An (plus k l)) (minus n k))).
+Intros; Induction n.
+Cut k=O; [Intro; Rewrite H0; Simpl; Ring | Inversion H; Reflexivity].
+Cut k=(S n)\/(le k n).
+Intro; Elim H0; Intro.
+Rewrite H1; Simpl; Rewrite <- minus_n_n; Simpl; Ring.
+Replace (minus (S n) k) with (S (minus n k)).
+Simpl; Replace (plus k (S (minus n k))) with (S n).
+Rewrite Hrecn; [Ring | Assumption].
+Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite S_INR; Rewrite minus_INR; [Ring | Assumption].
+Apply INR_eq; Rewrite S_INR; Repeat Rewrite minus_INR.
+Rewrite S_INR; Ring.
+Apply le_trans with n; [Assumption | Apply le_n_Sn].
+Assumption.
+Inversion H; [Left; Reflexivity | Right; Assumption].
+Qed.
+
+(**********)
+Lemma prod_SO_pos : (An:nat->R;N:nat) ((n:nat)(le n N)->``0<=(An n)``) -> ``0<=(prod_f_SO An N)``.
+Intros; Induction N.
+Simpl; Left; Apply Rlt_R0_R1.
+Simpl; Apply Rmult_le_pos.
+Apply HrecN; Intros; Apply H; Apply le_trans with N; [Assumption | Apply le_n_Sn].
+Apply H; Apply le_n.
+Qed.
+
+(**********)
+Lemma prod_SO_Rle : (An,Bn:nat->R;N:nat) ((n:nat)(le n N)->``0<=(An n)<=(Bn n)``) -> ``(prod_f_SO An N)<=(prod_f_SO Bn N)``.
+Intros; Induction N.
+Right; Reflexivity.
+Simpl; Apply Rle_trans with ``(prod_f_SO An N)*(Bn (S N))``.
+Apply Rle_monotony.
+Apply prod_SO_pos; Intros; Elim (H n (le_trans ? ? ? H0 (le_n_Sn N))); Intros; Assumption.
+Elim (H (S N) (le_n (S N))); Intros; Assumption.
+Do 2 Rewrite <- (Rmult_sym (Bn (S N))); Apply Rle_monotony.
+Elim (H (S N) (le_n (S N))); Intros.
+Apply Rle_trans with (An (S N)); Assumption.
+Apply HrecN; Intros; Elim (H n (le_trans ? ? ? H0 (le_n_Sn N))); Intros; Split; Assumption.
+Qed.
+
+(* Application to factorial *)
+Lemma fact_prodSO : (n:nat) (INR (fact n))==(prod_f_SO [k:nat](INR k) n).
+Intro; Induction n.
+Reflexivity.
+Change (INR (mult (S n) (fact n)))==(prod_f_SO ([k:nat](INR k)) (S n)).
+Rewrite mult_INR; Rewrite Rmult_sym; Rewrite Hrecn; Reflexivity.
+Qed.
+
+Lemma le_n_2n : (n:nat) (le n (mult (2) n)).
+Induction n.
+Replace (mult (2) (O)) with O; [Apply le_n | Ring].
+Intros; Replace (mult (2) (S n0)) with (S (S (mult (2) n0))).
+Apply le_n_S; Apply le_S; Assumption.
+Replace (S (S (mult (2) n0))) with (plus (mult (2) n0) (2)); [Idtac | Ring].
+Replace (S n0) with (plus n0 (1)); [Idtac | Ring].
+Ring.
+Qed.
+
+(* We prove that (N!)²<=(2N-k)!*k! forall k in [|O;2N|] *)
+Lemma RfactN_fact2N_factk : (N,k:nat) (le k (mult (2) N)) -> ``(Rsqr (INR (fact N)))<=(INR (fact (minus (mult (S (S O)) N) k)))*(INR (fact k))``.
+Intros; Unfold Rsqr; Repeat Rewrite fact_prodSO.
+Cut (le k N)\/(le N k).
+Intro; Elim H0; Intro.
+Rewrite (prod_SO_split [l:nat](INR l) (minus (mult (2) N) k) N).
+Rewrite Rmult_assoc; Apply Rle_monotony.
+Apply prod_SO_pos; Intros; Apply pos_INR.
+Replace (minus (minus (mult (2) N) k) N) with (minus N k).
+Rewrite Rmult_sym; Rewrite (prod_SO_split [l:nat](INR l) N k).
+Apply Rle_monotony.
+Apply prod_SO_pos; Intros; Apply pos_INR.
+Apply prod_SO_Rle; Intros; Split.
+Apply pos_INR.
+Apply le_INR; Apply le_reg_r; Assumption.
+Assumption.
+Apply INR_eq; Repeat Rewrite minus_INR.
+Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
+Apply le_trans with N; [Assumption | Apply le_n_2n].
+Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus.
+Replace (mult (2) N) with (plus N N); [Idtac | Ring].
+Apply le_reg_r; Assumption.
+Assumption.
+Assumption.
+Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus.
+Replace (mult (2) N) with (plus N N); [Idtac | Ring].
+Apply le_reg_r; Assumption.
+Assumption.
+Rewrite <- (Rmult_sym (prod_f_SO [l:nat](INR l) k)); Rewrite (prod_SO_split [l:nat](INR l) k N).
+Rewrite Rmult_assoc; Apply Rle_monotony.
+Apply prod_SO_pos; Intros; Apply pos_INR.
+Rewrite Rmult_sym; Rewrite (prod_SO_split [l:nat](INR l) N (minus (mult (2) N) k)).
+Apply Rle_monotony.
+Apply prod_SO_pos; Intros; Apply pos_INR.
+Replace (minus N (minus (mult (2) N) k)) with (minus k N).
+Apply prod_SO_Rle; Intros; Split.
+Apply pos_INR.
+Apply le_INR; Apply le_reg_r.
+Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus.
+Replace (mult (2) N) with (plus N N); [Idtac | Ring]; Apply le_reg_r; Assumption.
+Assumption.
+Apply INR_eq; Repeat Rewrite minus_INR.
+Rewrite mult_INR; Do 2 Rewrite S_INR; Ring.
+Assumption.
+Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus.
+Replace (mult (2) N) with (plus N N); [Idtac | Ring]; Apply le_reg_r; Assumption.
+Assumption.
+Assumption.
+Apply simpl_le_plus_l with k; Rewrite <- le_plus_minus.
+Replace (mult (2) N) with (plus N N); [Idtac | Ring]; Apply le_reg_r; Assumption.
+Assumption.
+Assumption.
+Elim (le_dec k N); Intro; [Left; Assumption | Right; Assumption].
+Qed.
+
+(**********)
+Lemma INR_fact_lt_0 : (n:nat) ``0<(INR (fact n))``.
+Intro; Apply lt_INR_0; Apply neq_O_lt; Red; Intro; Elim (fact_neq_0 n); Symmetry; Assumption.
+Qed.
+
+(* We have the following inequality : (C 2N k) <= (C 2N N) forall k in [|O;2N|] *)
+Lemma C_maj : (N,k:nat) (le k (mult (2) N)) -> ``(C (mult (S (S O)) N) k)<=(C (mult (S (S O)) N) N)``.
+Intros; Unfold C; Unfold Rdiv; Apply Rle_monotony.
+Apply pos_INR.
+Replace (minus (mult (2) N) N) with N.
+Apply Rle_monotony_contra with ``((INR (fact N))*(INR (fact N)))``.
+Apply Rmult_lt_pos; Apply INR_fact_lt_0.
+Rewrite <- Rinv_r_sym.
+Rewrite Rmult_sym; Apply Rle_monotony_contra with ``((INR (fact k))*
+ (INR (fact (minus (mult (S (S O)) N) k))))``.
+Apply Rmult_lt_pos; Apply INR_fact_lt_0.
+Rewrite Rmult_1r; Rewrite <- mult_INR; Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
+Rewrite Rmult_1l; Rewrite mult_INR; Rewrite (Rmult_sym (INR (fact k))); Replace ``(INR (fact N))*(INR (fact N))`` with (Rsqr (INR (fact N))).
+Apply RfactN_fact2N_factk.
+Assumption.
+Reflexivity.
+Rewrite mult_INR; Apply prod_neq_R0; Apply INR_fact_neq_0.
+Apply prod_neq_R0; Apply INR_fact_neq_0.
+Apply INR_eq; Rewrite minus_INR; [Rewrite mult_INR; Do 2 Rewrite S_INR; Ring | Apply le_n_2n].
+Qed.