summaryrefslogtreecommitdiff
path: root/theories7/Reals/Ranalysis4.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Ranalysis4.v')
-rw-r--r--theories7/Reals/Ranalysis4.v313
1 files changed, 0 insertions, 313 deletions
diff --git a/theories7/Reals/Ranalysis4.v b/theories7/Reals/Ranalysis4.v
deleted file mode 100644
index 061854dc..00000000
--- a/theories7/Reals/Ranalysis4.v
+++ /dev/null
@@ -1,313 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Ranalysis4.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require SeqSeries.
-Require Rtrigo.
-Require Ranalysis1.
-Require Ranalysis3.
-Require Exp_prop.
-V7only [Import R_scope.]. Open Local Scope R_scope.
-
-(**********)
-Lemma derivable_pt_inv : (f:R->R;x:R) ``(f x)<>0`` -> (derivable_pt f x) -> (derivable_pt (inv_fct f) x).
-Intros; Cut (derivable_pt (div_fct (fct_cte R1) f) x) -> (derivable_pt (inv_fct f) x).
-Intro; Apply X0.
-Apply derivable_pt_div.
-Apply derivable_pt_const.
-Assumption.
-Assumption.
-Unfold div_fct inv_fct fct_cte; Intro; Elim X0; Intros; Unfold derivable_pt; Apply Specif.existT with x0; Unfold derivable_pt_abs; Unfold derivable_pt_lim; Unfold derivable_pt_abs in p; Unfold derivable_pt_lim in p; Intros; Elim (p eps H0); Intros; Exists x1; Intros; Unfold Rdiv in H1; Unfold Rdiv; Rewrite <- (Rmult_1l ``/(f x)``); Rewrite <- (Rmult_1l ``/(f (x+h))``).
-Apply H1; Assumption.
-Qed.
-
-(**********)
-Lemma pr_nu_var : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) f==g -> (derive_pt f x pr1) == (derive_pt g x pr2).
-Unfold derivable_pt derive_pt; Intros.
-Elim pr1; Intros.
-Elim pr2; Intros.
-Simpl.
-Rewrite H in p.
-Apply unicite_limite with g x; Assumption.
-Qed.
-
-(**********)
-Lemma pr_nu_var2 : (f,g:R->R;x:R;pr1:(derivable_pt f x);pr2:(derivable_pt g x)) ((h:R)(f h)==(g h)) -> (derive_pt f x pr1) == (derive_pt g x pr2).
-Unfold derivable_pt derive_pt; Intros.
-Elim pr1; Intros.
-Elim pr2; Intros.
-Simpl.
-Assert H0 := (unicite_step2 ? ? ? p).
-Assert H1 := (unicite_step2 ? ? ? p0).
-Cut (limit1_in [h:R]``((f (x+h))-(f x))/h`` [h:R]``h <> 0`` x1 ``0``).
-Intro; Assert H3 := (unicite_step1 ? ? ? ? H0 H2).
-Assumption.
-Unfold limit1_in; Unfold limit_in; Unfold dist; Simpl; Unfold R_dist; Unfold limit1_in in H1; Unfold limit_in in H1; Unfold dist in H1; Simpl in H1; Unfold R_dist in H1.
-Intros; Elim (H1 eps H2); Intros.
-Elim H3; Intros.
-Exists x2.
-Split.
-Assumption.
-Intros; Do 2 Rewrite H; Apply H5; Assumption.
-Qed.
-
-(**********)
-Lemma derivable_inv : (f:R->R) ((x:R)``(f x)<>0``)->(derivable f)->(derivable (inv_fct f)).
-Intros.
-Unfold derivable; Intro.
-Apply derivable_pt_inv.
-Apply (H x).
-Apply (X x).
-Qed.
-
-Lemma derive_pt_inv : (f:R->R;x:R;pr:(derivable_pt f x);na:``(f x)<>0``) (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) == ``-(derive_pt f x pr)/(Rsqr (f x))``.
-Intros; Replace (derive_pt (inv_fct f) x (derivable_pt_inv f x na pr)) with (derive_pt (div_fct (fct_cte R1) f) x (derivable_pt_div (fct_cte R1) f x (derivable_pt_const R1 x) pr na)).
-Rewrite derive_pt_div; Rewrite derive_pt_const; Unfold fct_cte; Rewrite Rmult_Ol; Rewrite Rmult_1r; Unfold Rminus; Rewrite Rplus_Ol; Reflexivity.
-Apply pr_nu_var2.
-Intro; Unfold div_fct fct_cte inv_fct.
-Unfold Rdiv; Ring.
-Qed.
-
-(* Rabsolu *)
-Lemma Rabsolu_derive_1 : (x:R) ``0<x`` -> (derivable_pt_lim Rabsolu x ``1``).
-Intros.
-Unfold derivable_pt_lim; Intros.
-Exists (mkposreal x H); Intros.
-Rewrite (Rabsolu_right x).
-Rewrite (Rabsolu_right ``x+h``).
-Rewrite Rplus_sym.
-Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r.
-Rewrite Rplus_Or; Unfold Rdiv; Rewrite <- Rinv_r_sym.
-Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply H0.
-Apply H1.
-Apply Rle_sym1.
-Case (case_Rabsolu h); Intro.
-Rewrite (Rabsolu_left h r) in H2.
-Left; Rewrite Rplus_sym; Apply Rlt_anti_compatibility with ``-h``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H2.
-Apply ge0_plus_ge0_is_ge0.
-Left; Apply H.
-Apply Rle_sym2; Apply r.
-Left; Apply H.
-Qed.
-
-Lemma Rabsolu_derive_2 : (x:R) ``x<0`` -> (derivable_pt_lim Rabsolu x ``-1``).
-Intros.
-Unfold derivable_pt_lim; Intros.
-Cut ``0< -x``.
-Intro; Exists (mkposreal ``-x`` H1); Intros.
-Rewrite (Rabsolu_left x).
-Rewrite (Rabsolu_left ``x+h``).
-Rewrite Rplus_sym.
-Rewrite Ropp_distr1.
-Unfold Rminus; Rewrite Ropp_Ropp; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l.
-Rewrite Rplus_Or; Unfold Rdiv.
-Rewrite Ropp_mul1.
-Rewrite <- Rinv_r_sym.
-Rewrite Ropp_Ropp; Rewrite Rplus_Ropp_l; Rewrite Rabsolu_R0; Apply H0.
-Apply H2.
-Case (case_Rabsolu h); Intro.
-Apply Ropp_Rlt.
-Rewrite Ropp_O; Rewrite Ropp_distr1; Apply gt0_plus_gt0_is_gt0.
-Apply H1.
-Apply Rgt_RO_Ropp; Apply r.
-Rewrite (Rabsolu_right h r) in H3.
-Apply Rlt_anti_compatibility with ``-x``; Rewrite Rplus_Or; Rewrite <- Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Ol; Apply H3.
-Apply H.
-Apply Rgt_RO_Ropp; Apply H.
-Qed.
-
-(* Rabsolu is derivable for all x <> 0 *)
-Lemma derivable_pt_Rabsolu : (x:R) ``x<>0`` -> (derivable_pt Rabsolu x).
-Intros.
-Case (total_order_T x R0); Intro.
-Elim s; Intro.
-Unfold derivable_pt; Apply Specif.existT with ``-1``.
-Apply (Rabsolu_derive_2 x a).
-Elim H; Exact b.
-Unfold derivable_pt; Apply Specif.existT with ``1``.
-Apply (Rabsolu_derive_1 x r).
-Qed.
-
-(* Rabsolu is continuous for all x *)
-Lemma continuity_Rabsolu : (continuity Rabsolu).
-Unfold continuity; Intro.
-Case (Req_EM x R0); Intro.
-Unfold continuity_pt; Unfold continue_in; Unfold limit1_in; Unfold limit_in; Simpl; Unfold R_dist; Intros; Exists eps; Split.
-Apply H0.
-Intros; Rewrite H; Rewrite Rabsolu_R0; Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or; Rewrite Rabsolu_Rabsolu; Elim H1; Intros; Rewrite H in H3; Unfold Rminus in H3; Rewrite Ropp_O in H3; Rewrite Rplus_Or in H3; Apply H3.
-Apply derivable_continuous_pt; Apply (derivable_pt_Rabsolu x H).
-Qed.
-
-(* Finite sums : Sum a_k x^k *)
-Lemma continuity_finite_sum : (An:nat->R;N:nat) (continuity [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)).
-Intros; Unfold continuity; Intro.
-Induction N.
-Simpl.
-Apply continuity_pt_const.
-Unfold constant; Intros; Reflexivity.
-Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``).
-Apply continuity_pt_plus.
-Apply HrecN.
-Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))).
-Apply continuity_pt_scal.
-Apply derivable_continuous_pt.
-Apply derivable_pt_pow.
-Reflexivity.
-Reflexivity.
-Qed.
-
-Lemma derivable_pt_lim_fs : (An:nat->R;x:R;N:nat) (lt O N) -> (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N))).
-Intros; Induction N.
-Elim (lt_n_n ? H).
-Cut N=O\/(lt O N).
-Intro; Elim H0; Intro.
-Rewrite H1.
-Simpl.
-Replace [y:R]``(An O)*1+(An (S O))*(y*1)`` with (plus_fct (fct_cte ``(An O)*1``) (mult_real_fct ``(An (S O))`` (mult_fct id (fct_cte R1)))).
-Replace ``1*(An (S O))*1`` with ``0+(An (S O))*(1*(fct_cte R1 x)+(id x)*0)``.
-Apply derivable_pt_lim_plus.
-Apply derivable_pt_lim_const.
-Apply derivable_pt_lim_scal.
-Apply derivable_pt_lim_mult.
-Apply derivable_pt_lim_id.
-Apply derivable_pt_lim_const.
-Unfold fct_cte id; Ring.
-Reflexivity.
-Replace [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` (S N)) with (plus_fct [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) [y:R]``(An (S N))*(pow y (S N))``).
-Replace (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))) with (Rplus (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) ``(An (S N))*((INR (S (pred (S N))))*(pow x (pred (S N))))``).
-Apply derivable_pt_lim_plus.
-Apply HrecN.
-Assumption.
-Replace [y:R]``(An (S N))*(pow y (S N))`` with (mult_real_fct (An (S N)) [y:R](pow y (S N))).
-Apply derivable_pt_lim_scal.
-Replace (pred (S N)) with N; [Idtac | Reflexivity].
-Pattern 3 N; Replace N with (pred (S N)).
-Apply derivable_pt_lim_pow.
-Reflexivity.
-Reflexivity.
-Cut (pred (S N)) = (S (pred N)).
-Intro; Rewrite H2.
-Rewrite tech5.
-Apply Rplus_plus_r.
-Rewrite <- H2.
-Replace (pred (S N)) with N; [Idtac | Reflexivity].
-Ring.
-Simpl.
-Apply S_pred with O; Assumption.
-Unfold plus_fct.
-Simpl; Reflexivity.
-Inversion H.
-Left; Reflexivity.
-Right; Apply lt_le_trans with (1); [Apply lt_O_Sn | Assumption].
-Qed.
-
-Lemma derivable_pt_lim_finite_sum : (An:(nat->R); x:R; N:nat) (derivable_pt_lim [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x (Cases N of O => R0 | _ => (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred N)) end)).
-Intros.
-Induction N.
-Simpl.
-Rewrite Rmult_1r.
-Replace [_:R]``(An O)`` with (fct_cte (An O)); [Apply derivable_pt_lim_const | Reflexivity].
-Apply derivable_pt_lim_fs; Apply lt_O_Sn.
-Qed.
-
-Lemma derivable_pt_finite_sum : (An:nat->R;N:nat;x:R) (derivable_pt [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N) x).
-Intros.
-Unfold derivable_pt.
-Assert H := (derivable_pt_lim_finite_sum An x N).
-Induction N.
-Apply Specif.existT with R0; Apply H.
-Apply Specif.existT with (sum_f_R0 [k:nat]``(INR (S k))*(An (S k))*(pow x k)`` (pred (S N))); Apply H.
-Qed.
-
-Lemma derivable_finite_sum : (An:nat->R;N:nat) (derivable [y:R](sum_f_R0 [k:nat]``(An k)*(pow y k)`` N)).
-Intros; Unfold derivable; Intro; Apply derivable_pt_finite_sum.
-Qed.
-
-(* Regularity of hyperbolic functions *)
-Lemma derivable_pt_lim_cosh : (x:R) (derivable_pt_lim cosh x ``(sinh x)``).
-Intro.
-Unfold cosh sinh; Unfold Rdiv.
-Replace [x0:R]``((exp x0)+(exp ( -x0)))*/2`` with (mult_fct (plus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity].
-Replace ``((exp x)-(exp ( -x)))*/2`` with ``((exp x)+((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((plus_fct exp (comp exp (opp_fct id))) x)*0``.
-Apply derivable_pt_lim_mult.
-Apply derivable_pt_lim_plus.
-Apply derivable_pt_lim_exp.
-Apply derivable_pt_lim_comp.
-Apply derivable_pt_lim_opp.
-Apply derivable_pt_lim_id.
-Apply derivable_pt_lim_exp.
-Apply derivable_pt_lim_const.
-Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring.
-Qed.
-
-Lemma derivable_pt_lim_sinh : (x:R) (derivable_pt_lim sinh x ``(cosh x)``).
-Intro.
-Unfold cosh sinh; Unfold Rdiv.
-Replace [x0:R]``((exp x0)-(exp ( -x0)))*/2`` with (mult_fct (minus_fct exp (comp exp (opp_fct id))) (fct_cte ``/2``)); [Idtac | Reflexivity].
-Replace ``((exp x)+(exp ( -x)))*/2`` with ``((exp x)-((exp (-x))*-1))*((fct_cte (Rinv 2)) x)+((minus_fct exp (comp exp (opp_fct id))) x)*0``.
-Apply derivable_pt_lim_mult.
-Apply derivable_pt_lim_minus.
-Apply derivable_pt_lim_exp.
-Apply derivable_pt_lim_comp.
-Apply derivable_pt_lim_opp.
-Apply derivable_pt_lim_id.
-Apply derivable_pt_lim_exp.
-Apply derivable_pt_lim_const.
-Unfold plus_fct mult_real_fct comp opp_fct id fct_cte; Ring.
-Qed.
-
-Lemma derivable_pt_exp : (x:R) (derivable_pt exp x).
-Intro.
-Unfold derivable_pt.
-Apply Specif.existT with (exp x).
-Apply derivable_pt_lim_exp.
-Qed.
-
-Lemma derivable_pt_cosh : (x:R) (derivable_pt cosh x).
-Intro.
-Unfold derivable_pt.
-Apply Specif.existT with (sinh x).
-Apply derivable_pt_lim_cosh.
-Qed.
-
-Lemma derivable_pt_sinh : (x:R) (derivable_pt sinh x).
-Intro.
-Unfold derivable_pt.
-Apply Specif.existT with (cosh x).
-Apply derivable_pt_lim_sinh.
-Qed.
-
-Lemma derivable_exp : (derivable exp).
-Unfold derivable; Apply derivable_pt_exp.
-Qed.
-
-Lemma derivable_cosh : (derivable cosh).
-Unfold derivable; Apply derivable_pt_cosh.
-Qed.
-
-Lemma derivable_sinh : (derivable sinh).
-Unfold derivable; Apply derivable_pt_sinh.
-Qed.
-
-Lemma derive_pt_exp : (x:R) (derive_pt exp x (derivable_pt_exp x))==(exp x).
-Intro; Apply derive_pt_eq_0.
-Apply derivable_pt_lim_exp.
-Qed.
-
-Lemma derive_pt_cosh : (x:R) (derive_pt cosh x (derivable_pt_cosh x))==(sinh x).
-Intro; Apply derive_pt_eq_0.
-Apply derivable_pt_lim_cosh.
-Qed.
-
-Lemma derive_pt_sinh : (x:R) (derive_pt sinh x (derivable_pt_sinh x))==(cosh x).
-Intro; Apply derive_pt_eq_0.
-Apply derivable_pt_lim_sinh.
-Qed.