summaryrefslogtreecommitdiff
path: root/theories7/Reals/PartSum.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/PartSum.v')
-rw-r--r--theories7/Reals/PartSum.v475
1 files changed, 0 insertions, 475 deletions
diff --git a/theories7/Reals/PartSum.v b/theories7/Reals/PartSum.v
deleted file mode 100644
index 4d28bec8..00000000
--- a/theories7/Reals/PartSum.v
+++ /dev/null
@@ -1,475 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: PartSum.v,v 1.1.2.2 2005/07/13 23:19:16 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require Rseries.
-Require Rcomplete.
-Require Max.
-V7only [ Import nat_scope. Import Z_scope. Import R_scope. ].
-Open Local Scope R_scope.
-
-Lemma tech1 : (An:nat->R;N:nat) ((n:nat)``(le n N)``->``0<(An n)``) -> ``0 < (sum_f_R0 An N)``.
-Intros; Induction N.
-Simpl; Apply H; Apply le_n.
-Simpl; Apply gt0_plus_gt0_is_gt0.
-Apply HrecN; Intros; Apply H; Apply le_S; Assumption.
-Apply H; Apply le_n.
-Qed.
-
-(* Chasles' relation *)
-Lemma tech2 : (An:nat->R;m,n:nat) (lt m n) -> (sum_f_R0 An n) == (Rplus (sum_f_R0 An m) (sum_f_R0 [i:nat]``(An (plus (S m) i))`` (minus n (S m)))).
-Intros; Induction n.
-Elim (lt_n_O ? H).
-Cut (lt m n)\/m=n.
-Intro; Elim H0; Intro.
-Replace (sum_f_R0 An (S n)) with ``(sum_f_R0 An n)+(An (S n))``; [Idtac | Reflexivity].
-Replace (minus (S n) (S m)) with (S (minus n (S m))).
-Replace (sum_f_R0 [i:nat](An (plus (S m) i)) (S (minus n (S m)))) with (Rplus (sum_f_R0 [i:nat](An (plus (S m) i)) (minus n (S m))) (An (plus (S m) (S (minus n (S m)))))); [Idtac | Reflexivity].
-Replace (plus (S m) (S (minus n (S m)))) with (S n).
-Rewrite (Hrecn H1).
-Ring.
-Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite minus_INR.
-Rewrite S_INR; Ring.
-Apply lt_le_S; Assumption.
-Apply INR_eq; Rewrite S_INR; Repeat Rewrite minus_INR.
-Repeat Rewrite S_INR; Ring.
-Apply le_n_S; Apply lt_le_weak; Assumption.
-Apply lt_le_S; Assumption.
-Rewrite H1; Rewrite <- minus_n_n; Simpl.
-Replace (plus n O) with n; [Reflexivity | Ring].
-Inversion H.
-Right; Reflexivity.
-Left; Apply lt_le_trans with (S m); [Apply lt_n_Sn | Assumption].
-Qed.
-
-(* Sum of geometric sequences *)
-Lemma tech3 : (k:R;N:nat) ``k<>1`` -> (sum_f_R0 [i:nat](pow k i) N)==``(1-(pow k (S N)))/(1-k)``.
-Intros; Cut ``1-k<>0``.
-Intro; Induction N.
-Simpl; Rewrite Rmult_1r; Unfold Rdiv; Rewrite <- Rinv_r_sym.
-Reflexivity.
-Apply H0.
-Replace (sum_f_R0 ([i:nat](pow k i)) (S N)) with (Rplus (sum_f_R0 [i:nat](pow k i) N) (pow k (S N))); [Idtac | Reflexivity]; Rewrite HrecN; Replace ``(1-(pow k (S N)))/(1-k)+(pow k (S N))`` with ``((1-(pow k (S N)))+(1-k)*(pow k (S N)))/(1-k)``.
-Apply r_Rmult_mult with ``1-k``.
-Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(1-k)``); Repeat Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym; [ Do 2 Rewrite Rmult_1l; Simpl; Ring | Apply H0].
-Apply H0.
-Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Rewrite (Rmult_sym ``1-k``); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r; Reflexivity.
-Apply H0.
-Apply Rminus_eq_contra; Red; Intro; Elim H; Symmetry; Assumption.
-Qed.
-
-Lemma tech4 : (An:nat->R;k:R;N:nat) ``0<=k`` -> ((i:nat)``(An (S i))<k*(An i)``) -> ``(An N)<=(An O)*(pow k N)``.
-Intros; Induction N.
-Simpl; Right; Ring.
-Apply Rle_trans with ``k*(An N)``.
-Left; Apply (H0 N).
-Replace (S N) with (plus N (1)); [Idtac | Ring].
-Rewrite pow_add; Simpl; Rewrite Rmult_1r; Replace ``(An O)*((pow k N)*k)`` with ``k*((An O)*(pow k N))``; [Idtac | Ring]; Apply Rle_monotony.
-Assumption.
-Apply HrecN.
-Qed.
-
-Lemma tech5 : (An:nat->R;N:nat) (sum_f_R0 An (S N))==``(sum_f_R0 An N)+(An (S N))``.
-Intros; Reflexivity.
-Qed.
-
-Lemma tech6 : (An:nat->R;k:R;N:nat) ``0<=k`` -> ((i:nat)``(An (S i))<k*(An i)``) -> (Rle (sum_f_R0 An N) (Rmult (An O) (sum_f_R0 [i:nat](pow k i) N))).
-Intros; Induction N.
-Simpl; Right; Ring.
-Apply Rle_trans with (Rplus (Rmult (An O) (sum_f_R0 [i:nat](pow k i) N)) (An (S N))).
-Rewrite tech5; Do 2 Rewrite <- (Rplus_sym (An (S N))); Apply Rle_compatibility.
-Apply HrecN.
-Rewrite tech5 ; Rewrite Rmult_Rplus_distr; Apply Rle_compatibility.
-Apply tech4; Assumption.
-Qed.
-
-Lemma tech7 : (r1,r2:R) ``r1<>0`` -> ``r2<>0`` -> ``r1<>r2`` -> ``/r1<>/r2``.
-Intros; Red; Intro.
-Assert H3 := (Rmult_mult_r r1 ? ? H2).
-Rewrite <- Rinv_r_sym in H3; [Idtac | Assumption].
-Assert H4 := (Rmult_mult_r r2 ? ? H3).
-Rewrite Rmult_1r in H4; Rewrite <- Rmult_assoc in H4.
-Rewrite Rinv_r_simpl_m in H4; [Idtac | Assumption].
-Elim H1; Symmetry; Assumption.
-Qed.
-
-Lemma tech11 : (An,Bn,Cn:nat->R;N:nat) ((i:nat) (An i)==``(Bn i)-(Cn i)``) -> (sum_f_R0 An N)==``(sum_f_R0 Bn N)-(sum_f_R0 Cn N)``.
-Intros; Induction N.
-Simpl; Apply H.
-Do 3 Rewrite tech5; Rewrite HrecN; Rewrite (H (S N)); Ring.
-Qed.
-
-Lemma tech12 : (An:nat->R;x:R;l:R) (Un_cv [N:nat](sum_f_R0 [i:nat]``(An i)*(pow x i)`` N) l) -> (Pser An x l).
-Intros; Unfold Pser; Unfold infinit_sum; Unfold Un_cv in H; Assumption.
-Qed.
-
-Lemma scal_sum : (An:nat->R;N:nat;x:R) (Rmult x (sum_f_R0 An N))==(sum_f_R0 [i:nat]``(An i)*x`` N).
-Intros; Induction N.
-Simpl; Ring.
-Do 2 Rewrite tech5.
-Rewrite Rmult_Rplus_distr; Rewrite <- HrecN; Ring.
-Qed.
-
-Lemma decomp_sum : (An:nat->R;N:nat) (lt O N) -> (sum_f_R0 An N)==(Rplus (An O) (sum_f_R0 [i:nat](An (S i)) (pred N))).
-Intros; Induction N.
-Elim (lt_n_n ? H).
-Cut (lt O N)\/N=O.
-Intro; Elim H0; Intro.
-Cut (S (pred N))=(pred (S N)).
-Intro; Rewrite <- H2.
-Do 2 Rewrite tech5.
-Replace (S (S (pred N))) with (S N).
-Rewrite (HrecN H1); Ring.
-Rewrite H2; Simpl; Reflexivity.
-Assert H2 := (O_or_S N).
-Elim H2; Intros.
-Elim a; Intros.
-Rewrite <- p.
-Simpl; Reflexivity.
-Rewrite <- b in H1; Elim (lt_n_n ? H1).
-Rewrite H1; Simpl; Reflexivity.
-Inversion H.
-Right; Reflexivity.
-Left; Apply lt_le_trans with (1); [Apply lt_O_Sn | Assumption].
-Qed.
-
-Lemma plus_sum : (An,Bn:nat->R;N:nat) (sum_f_R0 [i:nat]``(An i)+(Bn i)`` N)==``(sum_f_R0 An N)+(sum_f_R0 Bn N)``.
-Intros; Induction N.
-Simpl; Ring.
-Do 3 Rewrite tech5; Rewrite HrecN; Ring.
-Qed.
-
-Lemma sum_eq : (An,Bn:nat->R;N:nat) ((i:nat)(le i N)->(An i)==(Bn i)) -> (sum_f_R0 An N)==(sum_f_R0 Bn N).
-Intros; Induction N.
-Simpl; Apply H; Apply le_n.
-Do 2 Rewrite tech5; Rewrite HrecN.
-Rewrite (H (S N)); [Reflexivity | Apply le_n].
-Intros; Apply H; Apply le_trans with N; [Assumption | Apply le_n_Sn].
-Qed.
-
-(* Unicity of the limit defined by convergent series *)
-Lemma unicity_sum : (An:nat->R;l1,l2:R) (infinit_sum An l1) -> (infinit_sum An l2) -> l1 == l2.
-Unfold infinit_sum; Intros.
-Case (Req_EM l1 l2); Intro.
-Assumption.
-Cut ``0<(Rabsolu ((l1-l2)/2))``; [Intro | Apply Rabsolu_pos_lt].
-Elim (H ``(Rabsolu ((l1-l2)/2))`` H2); Intros.
-Elim (H0 ``(Rabsolu ((l1-l2)/2))`` H2); Intros.
-Pose N := (max x0 x); Cut (ge N x0).
-Cut (ge N x).
-Intros; Assert H7 := (H3 N H5); Assert H8 := (H4 N H6).
-Cut ``(Rabsolu (l1-l2)) <= (R_dist (sum_f_R0 An N) l1) + (R_dist (sum_f_R0 An N) l2)``.
-Intro; Assert H10 := (Rplus_lt ? ? ? ? H7 H8); Assert H11 := (Rle_lt_trans ? ? ? H9 H10); Unfold Rdiv in H11; Rewrite Rabsolu_mult in H11.
-Cut ``(Rabsolu (/2))==/2``.
-Intro; Rewrite H12 in H11; Assert H13 := double_var; Unfold Rdiv in H13; Rewrite <- H13 in H11.
-Elim (Rlt_antirefl ? H11).
-Apply Rabsolu_right; Left; Change ``0</2``; Apply Rlt_Rinv; Cut ~(O=(2)); [Intro H20; Generalize (lt_INR_0 (2) (neq_O_lt (2) H20)); Unfold INR; Intro; Assumption | Discriminate].
-Unfold R_dist; Rewrite <- (Rabsolu_Ropp ``(sum_f_R0 An N)-l1``); Rewrite Ropp_distr3.
-Replace ``l1-l2`` with ``((l1-(sum_f_R0 An N)))+((sum_f_R0 An N)-l2)``; [Idtac | Ring].
-Apply Rabsolu_triang.
-Unfold ge; Unfold N; Apply le_max_r.
-Unfold ge; Unfold N; Apply le_max_l.
-Unfold Rdiv; Apply prod_neq_R0.
-Apply Rminus_eq_contra; Assumption.
-Apply Rinv_neq_R0; DiscrR.
-Qed.
-
-Lemma minus_sum : (An,Bn:nat->R;N:nat) (sum_f_R0 [i:nat]``(An i)-(Bn i)`` N)==``(sum_f_R0 An N)-(sum_f_R0 Bn N)``.
-Intros; Induction N.
-Simpl; Ring.
-Do 3 Rewrite tech5; Rewrite HrecN; Ring.
-Qed.
-
-Lemma sum_decomposition : (An:nat->R;N:nat) (Rplus (sum_f_R0 [l:nat](An (mult (2) l)) (S N)) (sum_f_R0 [l:nat](An (S (mult (2) l))) N))==(sum_f_R0 An (mult (2) (S N))).
-Intros.
-Induction N.
-Simpl; Ring.
-Rewrite tech5.
-Rewrite (tech5 [l:nat](An (S (mult (2) l))) N).
-Replace (mult (2) (S (S N))) with (S (S (mult (2) (S N)))).
-Rewrite (tech5 An (S (mult (2) (S N)))).
-Rewrite (tech5 An (mult (2) (S N))).
-Rewrite <- HrecN.
-Ring.
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR;Repeat Rewrite S_INR.
-Ring.
-Qed.
-
-Lemma sum_Rle : (An,Bn:nat->R;N:nat) ((n:nat)(le n N)->``(An n)<=(Bn n)``) -> ``(sum_f_R0 An N)<=(sum_f_R0 Bn N)``.
-Intros.
-Induction N.
-Simpl; Apply H.
-Apply le_n.
-Do 2 Rewrite tech5.
-Apply Rle_trans with ``(sum_f_R0 An N)+(Bn (S N))``.
-Apply Rle_compatibility.
-Apply H.
-Apply le_n.
-Do 2 Rewrite <- (Rplus_sym ``(Bn (S N))``).
-Apply Rle_compatibility.
-Apply HrecN.
-Intros; Apply H.
-Apply le_trans with N; [Assumption | Apply le_n_Sn].
-Qed.
-
-Lemma sum_Rabsolu : (An:nat->R;N:nat) (Rle (Rabsolu (sum_f_R0 An N)) (sum_f_R0 [l:nat](Rabsolu (An l)) N)).
-Intros.
-Induction N.
-Simpl.
-Right; Reflexivity.
-Do 2 Rewrite tech5.
-Apply Rle_trans with ``(Rabsolu (sum_f_R0 An N))+(Rabsolu (An (S N)))``.
-Apply Rabsolu_triang.
-Do 2 Rewrite <- (Rplus_sym (Rabsolu (An (S N)))).
-Apply Rle_compatibility.
-Apply HrecN.
-Qed.
-
-Lemma sum_cte : (x:R;N:nat) (sum_f_R0 [_:nat]x N) == ``x*(INR (S N))``.
-Intros.
-Induction N.
-Simpl; Ring.
-Rewrite tech5.
-Rewrite HrecN; Repeat Rewrite S_INR; Ring.
-Qed.
-
-(**********)
-Lemma sum_growing : (An,Bn:nat->R;N:nat) ((n:nat)``(An n)<=(Bn n)``)->``(sum_f_R0 An N)<=(sum_f_R0 Bn N)``.
-Intros.
-Induction N.
-Simpl; Apply H.
-Do 2 Rewrite tech5.
-Apply Rle_trans with ``(sum_f_R0 An N)+(Bn (S N))``.
-Apply Rle_compatibility; Apply H.
-Do 2 Rewrite <- (Rplus_sym (Bn (S N))).
-Apply Rle_compatibility; Apply HrecN.
-Qed.
-
-(**********)
-Lemma Rabsolu_triang_gen : (An:nat->R;N:nat) (Rle (Rabsolu (sum_f_R0 An N)) (sum_f_R0 [i:nat](Rabsolu (An i)) N)).
-Intros.
-Induction N.
-Simpl.
-Right; Reflexivity.
-Do 2 Rewrite tech5.
-Apply Rle_trans with ``(Rabsolu ((sum_f_R0 An N)))+(Rabsolu (An (S N)))``.
-Apply Rabsolu_triang.
-Do 2 Rewrite <- (Rplus_sym (Rabsolu (An (S N)))).
-Apply Rle_compatibility; Apply HrecN.
-Qed.
-
-(**********)
-Lemma cond_pos_sum : (An:nat->R;N:nat) ((n:nat)``0<=(An n)``) -> ``0<=(sum_f_R0 An N)``.
-Intros.
-Induction N.
-Simpl; Apply H.
-Rewrite tech5.
-Apply ge0_plus_ge0_is_ge0.
-Apply HrecN.
-Apply H.
-Qed.
-
-(* Cauchy's criterion for series *)
-Definition Cauchy_crit_series [An:nat->R] : Prop := (Cauchy_crit [N:nat](sum_f_R0 An N)).
-
-(* If (|An|) satisfies the Cauchy's criterion for series, then (An) too *)
-Lemma cauchy_abs : (An:nat->R) (Cauchy_crit_series [i:nat](Rabsolu (An i))) -> (Cauchy_crit_series An).
-Unfold Cauchy_crit_series; Unfold Cauchy_crit.
-Intros.
-Elim (H eps H0); Intros.
-Exists x.
-Intros.
-Cut (Rle (R_dist (sum_f_R0 An n) (sum_f_R0 An m)) (R_dist (sum_f_R0 [i:nat](Rabsolu (An i)) n) (sum_f_R0 [i:nat](Rabsolu (An i)) m))).
-Intro.
-Apply Rle_lt_trans with (R_dist (sum_f_R0 [i:nat](Rabsolu (An i)) n) (sum_f_R0 [i:nat](Rabsolu (An i)) m)).
-Assumption.
-Apply H1; Assumption.
-Assert H4 := (lt_eq_lt_dec n m).
-Elim H4; Intro.
-Elim a; Intro.
-Rewrite (tech2 An n m); [Idtac | Assumption].
-Rewrite (tech2 [i:nat](Rabsolu (An i)) n m); [Idtac | Assumption].
-Unfold R_dist.
-Unfold Rminus.
-Do 2 Rewrite Ropp_distr1.
-Do 2 Rewrite <- Rplus_assoc.
-Do 2 Rewrite Rplus_Ropp_r.
-Do 2 Rewrite Rplus_Ol.
-Do 2 Rewrite Rabsolu_Ropp.
-Rewrite (Rabsolu_right (sum_f_R0 [i:nat](Rabsolu (An (plus (S n) i))) (minus m (S n)))).
-Pose Bn:=[i:nat](An (plus (S n) i)).
-Replace [i:nat](Rabsolu (An (plus (S n) i))) with [i:nat](Rabsolu (Bn i)).
-Apply Rabsolu_triang_gen.
-Unfold Bn; Reflexivity.
-Apply Rle_sym1.
-Apply cond_pos_sum.
-Intro; Apply Rabsolu_pos.
-Rewrite b.
-Unfold R_dist.
-Unfold Rminus; Do 2 Rewrite Rplus_Ropp_r.
-Rewrite Rabsolu_R0; Right; Reflexivity.
-Rewrite (tech2 An m n); [Idtac | Assumption].
-Rewrite (tech2 [i:nat](Rabsolu (An i)) m n); [Idtac | Assumption].
-Unfold R_dist.
-Unfold Rminus.
-Do 2 Rewrite Rplus_assoc.
-Rewrite (Rplus_sym (sum_f_R0 An m)).
-Rewrite (Rplus_sym (sum_f_R0 [i:nat](Rabsolu (An i)) m)).
-Do 2 Rewrite Rplus_assoc.
-Do 2 Rewrite Rplus_Ropp_l.
-Do 2 Rewrite Rplus_Or.
-Rewrite (Rabsolu_right (sum_f_R0 [i:nat](Rabsolu (An (plus (S m) i))) (minus n (S m)))).
-Pose Bn:=[i:nat](An (plus (S m) i)).
-Replace [i:nat](Rabsolu (An (plus (S m) i))) with [i:nat](Rabsolu (Bn i)).
-Apply Rabsolu_triang_gen.
-Unfold Bn; Reflexivity.
-Apply Rle_sym1.
-Apply cond_pos_sum.
-Intro; Apply Rabsolu_pos.
-Qed.
-
-(**********)
-Lemma cv_cauchy_1 : (An:nat->R) (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)) -> (Cauchy_crit_series An).
-Intros.
-Elim X; Intros.
-Unfold Un_cv in p.
-Unfold Cauchy_crit_series; Unfold Cauchy_crit.
-Intros.
-Cut ``0<eps/2``.
-Intro.
-Elim (p ``eps/2`` H0); Intros.
-Exists x0.
-Intros.
-Apply Rle_lt_trans with ``(R_dist (sum_f_R0 An n) x)+(R_dist (sum_f_R0 An m) x)``.
-Unfold R_dist.
-Replace ``(sum_f_R0 An n)-(sum_f_R0 An m)`` with ``((sum_f_R0 An n)-x)+ -((sum_f_R0 An m)-x)``; [Idtac | Ring].
-Rewrite <- (Rabsolu_Ropp ``(sum_f_R0 An m)-x``).
-Apply Rabsolu_triang.
-Apply Rlt_le_trans with ``eps/2+eps/2``.
-Apply Rplus_lt.
-Apply H1; Assumption.
-Apply H1; Assumption.
-Right; Symmetry; Apply double_var.
-Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0].
-Qed.
-
-Lemma cv_cauchy_2 : (An:nat->R) (Cauchy_crit_series An) -> (sigTT R [l:R](Un_cv [N:nat](sum_f_R0 An N) l)).
-Intros.
-Apply R_complete.
-Unfold Cauchy_crit_series in H.
-Exact H.
-Qed.
-
-(**********)
-Lemma sum_eq_R0 : (An:nat->R;N:nat) ((n:nat)(le n N)->``(An n)==0``) -> (sum_f_R0 An N)==R0.
-Intros; Induction N.
-Simpl; Apply H; Apply le_n.
-Rewrite tech5; Rewrite HrecN; [Rewrite Rplus_Ol; Apply H; Apply le_n | Intros; Apply H; Apply le_trans with N; [Assumption | Apply le_n_Sn]].
-Qed.
-
-Definition SP [fn:nat->R->R;N:nat] : R->R := [x:R](sum_f_R0 [k:nat]``(fn k x)`` N).
-
-(**********)
-Lemma sum_incr : (An:nat->R;N:nat;l:R) (Un_cv [n:nat](sum_f_R0 An n) l) -> ((n:nat)``0<=(An n)``) -> ``(sum_f_R0 An N)<=l``.
-Intros; Case (total_order_T (sum_f_R0 An N) l); Intro.
-Elim s; Intro.
-Left; Apply a.
-Right; Apply b.
-Cut (Un_growing [n:nat](sum_f_R0 An n)).
-Intro; LetTac l1 := (sum_f_R0 An N) in r.
-Unfold Un_cv in H; Cut ``0<l1-l``.
-Intro; Elim (H ? H2); Intros.
-Pose N0 := (max x N); Cut (ge N0 x).
-Intro; Assert H5 := (H3 N0 H4).
-Cut ``l1<=(sum_f_R0 An N0)``.
-Intro; Unfold R_dist in H5; Rewrite Rabsolu_right in H5.
-Cut ``(sum_f_R0 An N0)<l1``.
-Intro; Elim (Rlt_antirefl ? (Rlt_le_trans ? ? ? H7 H6)).
-Apply Rlt_anti_compatibility with ``-l``.
-Do 2 Rewrite (Rplus_sym ``-l``).
-Apply H5.
-Apply Rle_sym1; Apply Rle_anti_compatibility with l.
-Rewrite Rplus_Or; Replace ``l+((sum_f_R0 An N0)-l)`` with (sum_f_R0 An N0); [Idtac | Ring]; Apply Rle_trans with l1.
-Left; Apply r.
-Apply H6.
-Unfold l1; Apply Rle_sym2; Apply (growing_prop [k:nat](sum_f_R0 An k)).
-Apply H1.
-Unfold ge N0; Apply le_max_r.
-Unfold ge N0; Apply le_max_l.
-Apply Rlt_anti_compatibility with l; Rewrite Rplus_Or; Replace ``l+(l1-l)`` with l1; [Apply r | Ring].
-Unfold Un_growing; Intro; Simpl; Pattern 1 (sum_f_R0 An n); Rewrite <- Rplus_Or; Apply Rle_compatibility; Apply H0.
-Qed.
-
-(**********)
-Lemma sum_cv_maj : (An:nat->R;fn:nat->R->R;x,l1,l2:R) (Un_cv [n:nat](SP fn n x) l1) -> (Un_cv [n:nat](sum_f_R0 An n) l2) -> ((n:nat)``(Rabsolu (fn n x))<=(An n)``) -> ``(Rabsolu l1)<=l2``.
-Intros; Case (total_order_T (Rabsolu l1) l2); Intro.
-Elim s; Intro.
-Left; Apply a.
-Right; Apply b.
-Cut (n0:nat)``(Rabsolu (SP fn n0 x))<=(sum_f_R0 An n0)``.
-Intro; Cut ``0<((Rabsolu l1)-l2)/2``.
-Intro; Unfold Un_cv in H H0.
-Elim (H ? H3); Intros Na H4.
-Elim (H0 ? H3); Intros Nb H5.
-Pose N := (max Na Nb).
-Unfold R_dist in H4 H5.
-Cut ``(Rabsolu ((sum_f_R0 An N)-l2))<((Rabsolu l1)-l2)/2``.
-Intro; Cut ``(Rabsolu ((Rabsolu l1)-(Rabsolu (SP fn N x))))<((Rabsolu l1)-l2)/2``.
-Intro; Cut ``(sum_f_R0 An N)<((Rabsolu l1)+l2)/2``.
-Intro; Cut ``((Rabsolu l1)+l2)/2<(Rabsolu (SP fn N x))``.
-Intro; Cut ``(sum_f_R0 An N)<(Rabsolu (SP fn N x))``.
-Intro; Assert H11 := (H2 N).
-Elim (Rlt_antirefl ? (Rle_lt_trans ? ? ? H11 H10)).
-Apply Rlt_trans with ``((Rabsolu l1)+l2)/2``; Assumption.
-Case (case_Rabsolu ``(Rabsolu l1)-(Rabsolu (SP fn N x))``); Intro.
-Apply Rlt_trans with (Rabsolu l1).
-Apply Rlt_monotony_contra with ``2``.
-Sup0.
-Unfold Rdiv; Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r; Rewrite double; Apply Rlt_compatibility; Apply r.
-DiscrR.
-Apply (Rminus_lt ? ? r0).
-Rewrite (Rabsolu_right ? r0) in H7.
-Apply Rlt_anti_compatibility with ``((Rabsolu l1)-l2)/2-(Rabsolu (SP fn N x))``.
-Replace ``((Rabsolu l1)-l2)/2-(Rabsolu (SP fn N x))+((Rabsolu l1)+l2)/2`` with ``(Rabsolu l1)-(Rabsolu (SP fn N x))``.
-Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or; Apply H7.
-Unfold Rdiv; Rewrite Rmult_Rplus_distrl; Rewrite <- (Rmult_sym ``/2``); Rewrite Rminus_distr; Repeat Rewrite (Rmult_sym ``/2``); Pattern 1 (Rabsolu l1); Rewrite double_var; Unfold Rdiv; Ring.
-Case (case_Rabsolu ``(sum_f_R0 An N)-l2``); Intro.
-Apply Rlt_trans with l2.
-Apply (Rminus_lt ? ? r0).
-Apply Rlt_monotony_contra with ``2``.
-Sup0.
-Rewrite (double l2); Unfold Rdiv; Rewrite (Rmult_sym ``2``); Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r; Rewrite (Rplus_sym (Rabsolu l1)); Apply Rlt_compatibility; Apply r.
-DiscrR.
-Rewrite (Rabsolu_right ? r0) in H6; Apply Rlt_anti_compatibility with ``-l2``.
-Replace ``-l2+((Rabsolu l1)+l2)/2`` with ``((Rabsolu l1)-l2)/2``.
-Rewrite Rplus_sym; Apply H6.
-Unfold Rdiv; Rewrite <- (Rmult_sym ``/2``); Rewrite Rminus_distr; Rewrite Rmult_Rplus_distrl; Pattern 2 l2; Rewrite double_var; Repeat Rewrite (Rmult_sym ``/2``); Rewrite Ropp_distr1; Unfold Rdiv; Ring.
-Apply Rle_lt_trans with ``(Rabsolu ((SP fn N x)-l1))``.
-Rewrite <- Rabsolu_Ropp; Rewrite Ropp_distr3; Apply Rabsolu_triang_inv2.
-Apply H4; Unfold ge N; Apply le_max_l.
-Apply H5; Unfold ge N; Apply le_max_r.
-Unfold Rdiv; Apply Rmult_lt_pos.
-Apply Rlt_anti_compatibility with l2.
-Rewrite Rplus_Or; Replace ``l2+((Rabsolu l1)-l2)`` with (Rabsolu l1); [Apply r | Ring].
-Apply Rlt_Rinv; Sup0.
-Intros; Induction n0.
-Unfold SP; Simpl; Apply H1.
-Unfold SP; Simpl.
-Apply Rle_trans with (Rplus (Rabsolu (sum_f_R0 [k:nat](fn k x) n0)) (Rabsolu (fn (S n0) x))).
-Apply Rabsolu_triang.
-Apply Rle_trans with ``(sum_f_R0 An n0)+(Rabsolu (fn (S n0) x))``.
-Do 2 Rewrite <- (Rplus_sym (Rabsolu (fn (S n0) x))).
-Apply Rle_compatibility; Apply Hrecn0.
-Apply Rle_compatibility; Apply H1.
-Qed.