summaryrefslogtreecommitdiff
path: root/theories7/Reals/Exp_prop.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Exp_prop.v')
-rw-r--r--theories7/Reals/Exp_prop.v890
1 files changed, 0 insertions, 890 deletions
diff --git a/theories7/Reals/Exp_prop.v b/theories7/Reals/Exp_prop.v
deleted file mode 100644
index 6ed9c00b..00000000
--- a/theories7/Reals/Exp_prop.v
+++ /dev/null
@@ -1,890 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Exp_prop.v,v 1.1.2.1 2004/07/16 19:31:32 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require SeqSeries.
-Require Rtrigo.
-Require Ranalysis1.
-Require PSeries_reg.
-Require Div2.
-Require Even.
-Require Max.
-V7only [Import R_scope.].
-Open Local Scope nat_scope.
-V7only [Import nat_scope.].
-Open Local Scope R_scope.
-
-Definition E1 [x:R] : nat->R := [N:nat](sum_f_R0 [k:nat]``/(INR (fact k))*(pow x k)`` N).
-
-Lemma E1_cvg : (x:R) (Un_cv (E1 x) (exp x)).
-Intro; Unfold exp; Unfold projT1.
-Case (exist_exp x); Intro.
-Unfold exp_in Un_cv; Unfold infinit_sum E1; Trivial.
-Qed.
-
-Definition Reste_E [x,y:R] : nat->R := [N:nat](sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))`` (pred (minus N k))) (pred N)).
-
-Lemma exp_form : (x,y:R;n:nat) (lt O n) -> ``(E1 x n)*(E1 y n)-(Reste_E x y n)==(E1 (x+y) n)``.
-Intros; Unfold E1.
-Rewrite cauchy_finite.
-Unfold Reste_E; Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or; Apply sum_eq; Intros.
-Rewrite binomial.
-Rewrite scal_sum; Apply sum_eq; Intros.
-Unfold C; Unfold Rdiv; Repeat Rewrite Rmult_assoc; Rewrite (Rmult_sym (INR (fact i))); Repeat Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r; Rewrite Rinv_Rmult.
-Ring.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply H.
-Qed.
-
-Definition maj_Reste_E [x,y:R] : nat->R := [N:nat]``4*(pow (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S O)) N))/(Rsqr (INR (fact (div2 (pred N)))))``.
-
-Lemma Rle_Rinv : (x,y:R) ``0<x`` -> ``0<y`` -> ``x<=y`` -> ``/y<=/x``.
-Intros; Apply Rle_monotony_contra with x.
-Apply H.
-Rewrite <- Rinv_r_sym.
-Apply Rle_monotony_contra with y.
-Apply H0.
-Rewrite Rmult_1r; Rewrite Rmult_sym; Rewrite Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r; Apply H1.
-Red; Intro; Rewrite H2 in H0; Elim (Rlt_antirefl ? H0).
-Red; Intro; Rewrite H2 in H; Elim (Rlt_antirefl ? H).
-Qed.
-
-(**********)
-Lemma div2_double : (N:nat) (div2 (mult (2) N))=N.
-Intro; Induction N.
-Reflexivity.
-Replace (mult (2) (S N)) with (S (S (mult (2) N))).
-Simpl; Simpl in HrecN; Rewrite HrecN; Reflexivity.
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Qed.
-
-Lemma div2_S_double : (N:nat) (div2 (S (mult (2) N)))=N.
-Intro; Induction N.
-Reflexivity.
-Replace (mult (2) (S N)) with (S (S (mult (2) N))).
-Simpl; Simpl in HrecN; Rewrite HrecN; Reflexivity.
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Qed.
-
-Lemma div2_not_R0 : (N:nat) (lt (1) N) -> (lt O (div2 N)).
-Intros; Induction N.
-Elim (lt_n_O ? H).
-Cut (lt (1) N)\/N=(1).
-Intro; Elim H0; Intro.
-Assert H2 := (even_odd_dec N).
-Elim H2; Intro.
-Rewrite <- (even_div2 ? a); Apply HrecN; Assumption.
-Rewrite <- (odd_div2 ? b); Apply lt_O_Sn.
-Rewrite H1; Simpl; Apply lt_O_Sn.
-Inversion H.
-Right; Reflexivity.
-Left; Apply lt_le_trans with (2); [Apply lt_n_Sn | Apply H1].
-Qed.
-
-Lemma Reste_E_maj : (x,y:R;N:nat) (lt O N) -> ``(Rabsolu (Reste_E x y N))<=(maj_Reste_E x y N)``.
-Intros; Pose M := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))).
-Apply Rle_trans with (Rmult (pow M (mult (2) N)) (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(Rsqr (INR (fact (div2 (S N)))))`` (pred (minus N k))) (pred N))).
-Unfold Reste_E.
-Apply Rle_trans with (sum_f_R0 [k:nat](Rabsolu (sum_f_R0 [l:nat]``/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))`` (pred (minus N k)))) (pred N)).
-Apply (sum_Rabsolu [k:nat](sum_f_R0 [l:nat]``/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))`` (pred (minus N k))) (pred N)).
-Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(Rabsolu (/(INR (fact (S (plus l k))))*(pow x (S (plus l k)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))))`` (pred (minus N k))) (pred N)).
-Apply sum_Rle; Intros.
-Apply (sum_Rabsolu [l:nat]``/(INR (fact (S (plus l n))))*(pow x (S (plus l n)))*(/(INR (fact (minus N l)))*(pow y (minus N l)))``).
-Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``(pow M (mult (S (S O)) N))*/(INR (fact (S l)))*/(INR (fact (minus N l)))`` (pred (minus N k))) (pred N)).
-Apply sum_Rle; Intros.
-Apply sum_Rle; Intros.
-Repeat Rewrite Rabsolu_mult.
-Do 2 Rewrite <- Pow_Rabsolu.
-Rewrite (Rabsolu_right ``/(INR (fact (S (plus n0 n))))``).
-Rewrite (Rabsolu_right ``/(INR (fact (minus N n0)))``).
-Replace ``/(INR (fact (S (plus n0 n))))*(pow (Rabsolu x) (S (plus n0 n)))*
- (/(INR (fact (minus N n0)))*(pow (Rabsolu y) (minus N n0)))`` with ``/(INR (fact (minus N n0)))*/(INR (fact (S (plus n0 n))))*(pow (Rabsolu x) (S (plus n0 n)))*(pow (Rabsolu y) (minus N n0))``; [Idtac | Ring].
-Rewrite <- (Rmult_sym ``/(INR (fact (minus N n0)))``).
-Repeat Rewrite Rmult_assoc.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_trans with ``/(INR (fact (S n0)))*(pow (Rabsolu x) (S (plus n0 n)))*(pow (Rabsolu y) (minus N n0))``.
-Rewrite (Rmult_sym ``/(INR (fact (S (plus n0 n))))``); Rewrite (Rmult_sym ``/(INR (fact (S n0)))``); Repeat Rewrite Rmult_assoc; Apply Rle_monotony.
-Apply pow_le; Apply Rabsolu_pos.
-Rewrite (Rmult_sym ``/(INR (fact (S n0)))``); Apply Rle_monotony.
-Apply pow_le; Apply Rabsolu_pos.
-Apply Rle_Rinv.
-Apply INR_fact_lt_0.
-Apply INR_fact_lt_0.
-Apply le_INR; Apply fact_growing; Apply le_n_S.
-Apply le_plus_l.
-Rewrite (Rmult_sym ``(pow M (mult (S (S O)) N))``); Rewrite Rmult_assoc; Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_trans with ``(pow M (S (plus n0 n)))*(pow (Rabsolu y) (minus N n0))``.
-Do 2 Rewrite <- (Rmult_sym ``(pow (Rabsolu y) (minus N n0))``).
-Apply Rle_monotony.
-Apply pow_le; Apply Rabsolu_pos.
-Apply pow_incr; Split.
-Apply Rabsolu_pos.
-Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)).
-Apply RmaxLess1.
-Unfold M; Apply RmaxLess2.
-Apply Rle_trans with ``(pow M (S (plus n0 n)))*(pow M (minus N n0))``.
-Apply Rle_monotony.
-Apply pow_le; Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Unfold M; Apply RmaxLess1.
-Apply pow_incr; Split.
-Apply Rabsolu_pos.
-Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)).
-Apply RmaxLess2.
-Unfold M; Apply RmaxLess2.
-Rewrite <- pow_add; Replace (plus (S (plus n0 n)) (minus N n0)) with (plus N (S n)).
-Apply Rle_pow.
-Unfold M; Apply RmaxLess1.
-Replace (mult (2) N) with (plus N N); [Idtac | Ring].
-Apply le_reg_l.
-Replace N with (S (pred N)).
-Apply le_n_S; Apply H0.
-Symmetry; Apply S_pred with O; Apply H.
-Apply INR_eq; Do 2 Rewrite plus_INR; Do 2 Rewrite S_INR; Rewrite plus_INR; Rewrite minus_INR.
-Ring.
-Apply le_trans with (pred (minus N n)).
-Apply H1.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Apply H0.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n (0)) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Apply H0.
-Apply lt_pred_n_n.
-Apply H.
-Apply le_trans with (pred N).
-Apply H0.
-Apply le_pred_n.
-Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Rewrite scal_sum.
-Apply sum_Rle; Intros.
-Rewrite <- Rmult_sym.
-Rewrite scal_sum.
-Apply sum_Rle; Intros.
-Rewrite (Rmult_sym ``/(Rsqr (INR (fact (div2 (S N)))))``).
-Rewrite Rmult_assoc; Apply Rle_monotony.
-Apply pow_le.
-Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Unfold M; Apply RmaxLess1.
-Assert H2 := (even_odd_cor N).
-Elim H2; Intros N0 H3.
-Elim H3; Intro.
-Apply Rle_trans with ``/(INR (fact n0))*/(INR (fact (minus N n0)))``.
-Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (minus N n0)))``).
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_Rinv.
-Apply INR_fact_lt_0.
-Apply INR_fact_lt_0.
-Apply le_INR.
-Apply fact_growing.
-Apply le_n_Sn.
-Replace ``/(INR (fact n0))*/(INR (fact (minus N n0)))`` with ``(C N n0)/(INR (fact N))``.
-Pattern 1 N; Rewrite H4.
-Apply Rle_trans with ``(C N N0)/(INR (fact N))``.
-Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact N))``).
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Rewrite H4.
-Apply C_maj.
-Rewrite <- H4; Apply le_trans with (pred (minus N n)).
-Apply H1.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Apply H0.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n (0)) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Apply H0.
-Apply lt_pred_n_n.
-Apply H.
-Apply le_trans with (pred N).
-Apply H0.
-Apply le_pred_n.
-Replace ``(C N N0)/(INR (fact N))`` with ``/(Rsqr (INR (fact N0)))``.
-Rewrite H4; Rewrite div2_S_double; Right; Reflexivity.
-Unfold Rsqr C Rdiv.
-Repeat Rewrite Rinv_Rmult.
-Rewrite (Rmult_sym (INR (fact N))).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r; Replace (minus N N0) with N0.
-Ring.
-Replace N with (plus N0 N0).
-Symmetry; Apply minus_plus.
-Rewrite H4.
-Apply INR_eq; Rewrite plus_INR; Rewrite mult_INR; Do 2 Rewrite S_INR; Ring.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Unfold C Rdiv.
-Rewrite (Rmult_sym (INR (fact N))).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Rewrite Rinv_Rmult.
-Rewrite Rmult_1r; Ring.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Replace ``/(INR (fact (S n0)))*/(INR (fact (minus N n0)))`` with ``(C (S N) (S n0))/(INR (fact (S N)))``.
-Apply Rle_trans with ``(C (S N) (S N0))/(INR (fact (S N)))``.
-Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (S N)))``).
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Cut (S N) = (mult (2) (S N0)).
-Intro; Rewrite H5; Apply C_maj.
-Rewrite <- H5; Apply le_n_S.
-Apply le_trans with (pred (minus N n)).
-Apply H1.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Apply H0.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n (0)) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Apply H0.
-Apply lt_pred_n_n.
-Apply H.
-Apply le_trans with (pred N).
-Apply H0.
-Apply le_pred_n.
-Apply INR_eq; Rewrite H4.
-Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Cut (S N) = (mult (2) (S N0)).
-Intro.
-Replace ``(C (S N) (S N0))/(INR (fact (S N)))`` with ``/(Rsqr (INR (fact (S N0))))``.
-Rewrite H5; Rewrite div2_double.
-Right; Reflexivity.
-Unfold Rsqr C Rdiv.
-Repeat Rewrite Rinv_Rmult.
-Replace (minus (S N) (S N0)) with (S N0).
-Rewrite (Rmult_sym (INR (fact (S N)))).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r; Reflexivity.
-Apply INR_fact_neq_0.
-Replace (S N) with (plus (S N0) (S N0)).
-Symmetry; Apply minus_plus.
-Rewrite H5; Ring.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_eq; Rewrite H4; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Unfold C Rdiv.
-Rewrite (Rmult_sym (INR (fact (S N)))).
-Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r; Rewrite Rinv_Rmult.
-Reflexivity.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Unfold maj_Reste_E.
-Unfold Rdiv; Rewrite (Rmult_sym ``4``).
-Rewrite Rmult_assoc.
-Apply Rle_monotony.
-Apply pow_le.
-Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Apply RmaxLess1.
-Apply Rle_trans with (sum_f_R0 [k:nat]``(INR (minus N k))*/(Rsqr (INR (fact (div2 (S N)))))`` (pred N)).
-Apply sum_Rle; Intros.
-Rewrite sum_cte.
-Replace (S (pred (minus N n))) with (minus N n).
-Right; Apply Rmult_sym.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n (0)) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Apply H0.
-Apply lt_pred_n_n.
-Apply H.
-Apply le_trans with (pred N).
-Apply H0.
-Apply le_pred_n.
-Apply Rle_trans with (sum_f_R0 [k:nat]``(INR N)*/(Rsqr (INR (fact (div2 (S N)))))`` (pred N)).
-Apply sum_Rle; Intros.
-Do 2 Rewrite <- (Rmult_sym ``/(Rsqr (INR (fact (div2 (S N)))))``).
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply Rsqr_pos_lt.
-Apply INR_fact_neq_0.
-Apply le_INR.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Apply H0.
-Apply le_pred_n.
-Rewrite sum_cte; Replace (S (pred N)) with N.
-Cut (div2 (S N)) = (S (div2 (pred N))).
-Intro; Rewrite H0.
-Rewrite fact_simpl; Rewrite mult_sym; Rewrite mult_INR; Rewrite Rsqr_times.
-Rewrite Rinv_Rmult.
-Rewrite (Rmult_sym (INR N)); Repeat Rewrite Rmult_assoc; Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply Rsqr_pos_lt; Apply INR_fact_neq_0.
-Rewrite <- H0.
-Cut ``(INR N)<=(INR (mult (S (S O)) (div2 (S N))))``.
-Intro; Apply Rle_monotony_contra with ``(Rsqr (INR (div2 (S N))))``.
-Apply Rsqr_pos_lt.
-Apply not_O_INR; Red; Intro.
-Cut (lt (1) (S N)).
-Intro; Assert H4 := (div2_not_R0 ? H3).
-Rewrite H2 in H4; Elim (lt_n_O ? H4).
-Apply lt_n_S; Apply H.
-Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1l.
-Replace ``(INR N)*(INR N)`` with (Rsqr (INR N)); [Idtac | Reflexivity].
-Rewrite Rmult_assoc.
-Rewrite Rmult_sym.
-Replace ``4`` with (Rsqr ``2``); [Idtac | SqRing].
-Rewrite <- Rsqr_times.
-Apply Rsqr_incr_1.
-Replace ``2`` with (INR (2)).
-Rewrite <- mult_INR; Apply H1.
-Reflexivity.
-Left; Apply lt_INR_0; Apply H.
-Left; Apply Rmult_lt_pos.
-Sup0.
-Apply lt_INR_0; Apply div2_not_R0.
-Apply lt_n_S; Apply H.
-Cut (lt (1) (S N)).
-Intro; Unfold Rsqr; Apply prod_neq_R0; Apply not_O_INR; Intro; Assert H4 := (div2_not_R0 ? H2); Rewrite H3 in H4; Elim (lt_n_O ? H4).
-Apply lt_n_S; Apply H.
-Assert H1 := (even_odd_cor N).
-Elim H1; Intros N0 H2.
-Elim H2; Intro.
-Pattern 2 N; Rewrite H3.
-Rewrite div2_S_double.
-Right; Rewrite H3; Reflexivity.
-Pattern 2 N; Rewrite H3.
-Replace (S (S (mult (2) N0))) with (mult (2) (S N0)).
-Rewrite div2_double.
-Rewrite H3.
-Rewrite S_INR; Do 2 Rewrite mult_INR.
-Rewrite (S_INR N0).
-Rewrite Rmult_Rplus_distr.
-Apply Rle_compatibility.
-Rewrite Rmult_1r.
-Simpl.
-Pattern 1 R1; Rewrite <- Rplus_Or; Apply Rle_compatibility; Left; Apply Rlt_R0_R1.
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Unfold Rsqr; Apply prod_neq_R0; Apply INR_fact_neq_0.
-Unfold Rsqr; Apply prod_neq_R0; Apply not_O_INR; Discriminate.
-Assert H0 := (even_odd_cor N).
-Elim H0; Intros N0 H1.
-Elim H1; Intro.
-Cut (lt O N0).
-Intro; Rewrite H2.
-Rewrite div2_S_double.
-Replace (mult (2) N0) with (S (S (mult (2) (pred N0)))).
-Replace (pred (S (S (mult (2) (pred N0))))) with (S (mult (2) (pred N0))).
-Rewrite div2_S_double.
-Apply S_pred with O; Apply H3.
-Reflexivity.
-Replace N0 with (S (pred N0)).
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Symmetry; Apply S_pred with O; Apply H3.
-Rewrite H2 in H.
-Apply neq_O_lt.
-Red; Intro.
-Rewrite <- H3 in H.
-Simpl in H.
-Elim (lt_n_O ? H).
-Rewrite H2.
-Replace (pred (S (mult (2) N0))) with (mult (2) N0); [Idtac | Reflexivity].
-Replace (S (S (mult (2) N0))) with (mult (2) (S N0)).
-Do 2 Rewrite div2_double.
-Reflexivity.
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Apply S_pred with O; Apply H.
-Qed.
-
-Lemma maj_Reste_cv_R0 : (x,y:R) (Un_cv (maj_Reste_E x y) ``0``).
-Intros; Assert H := (Majxy_cv_R0 x y).
-Unfold Un_cv in H; Unfold Un_cv; Intros.
-Cut ``0<eps/4``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]].
-Elim (H ? H1); Intros N0 H2.
-Exists (max (mult (2) (S N0)) (2)); Intros.
-Unfold R_dist in H2; Unfold R_dist; Rewrite minus_R0; Unfold Majxy in H2; Unfold maj_Reste_E.
-Rewrite Rabsolu_right.
-Apply Rle_lt_trans with ``4*(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S (S (S O)))) (S (div2 (pred n)))))/(INR (fact (div2 (pred n))))``.
-Apply Rle_monotony.
-Left; Sup0.
-Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
-Rewrite (Rmult_sym ``(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S O)) n))``); Rewrite (Rmult_sym ``(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S (S (S O)))) (S (div2 (pred n)))))``); Rewrite Rmult_assoc; Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_trans with ``(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S O)) n))``.
-Rewrite Rmult_sym; Pattern 2 (pow (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (2) n)); Rewrite <- Rmult_1r; Apply Rle_monotony.
-Apply pow_le; Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Apply RmaxLess1.
-Apply Rle_monotony_contra with ``(INR (fact (div2 (pred n))))``.
-Apply INR_fact_lt_0.
-Rewrite Rmult_1r; Rewrite <- Rinv_r_sym.
-Replace R1 with (INR (1)); [Apply le_INR | Reflexivity].
-Apply lt_le_S.
-Apply INR_lt.
-Apply INR_fact_lt_0.
-Apply INR_fact_neq_0.
-Apply Rle_pow.
-Apply RmaxLess1.
-Assert H4 := (even_odd_cor n).
-Elim H4; Intros N1 H5.
-Elim H5; Intro.
-Cut (lt O N1).
-Intro.
-Rewrite H6.
-Replace (pred (mult (2) N1)) with (S (mult (2) (pred N1))).
-Rewrite div2_S_double.
-Replace (S (pred N1)) with N1.
-Apply INR_le.
-Right.
-Do 3 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Apply S_pred with O; Apply H7.
-Replace (mult (2) N1) with (S (S (mult (2) (pred N1)))).
-Reflexivity.
-Pattern 2 N1; Replace N1 with (S (pred N1)).
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Symmetry ; Apply S_pred with O; Apply H7.
-Apply INR_lt.
-Apply Rlt_monotony_contra with (INR (2)).
-Simpl; Sup0.
-Rewrite Rmult_Or; Rewrite <- mult_INR.
-Apply lt_INR_0.
-Rewrite <- H6.
-Apply lt_le_trans with (2).
-Apply lt_O_Sn.
-Apply le_trans with (max (mult (2) (S N0)) (2)).
-Apply le_max_r.
-Apply H3.
-Rewrite H6.
-Replace (pred (S (mult (2) N1))) with (mult (2) N1).
-Rewrite div2_double.
-Replace (mult (4) (S N1)) with (mult (2) (mult (2) (S N1))).
-Apply mult_le.
-Replace (mult (2) (S N1)) with (S (S (mult (2) N1))).
-Apply le_n_Sn.
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Ring.
-Reflexivity.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply Rlt_monotony_contra with ``/4``.
-Apply Rlt_Rinv; Sup0.
-Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l; Rewrite Rmult_sym.
-Replace ``(pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S (S (S O)))) (S (div2 (pred n)))))/(INR (fact (div2 (pred n))))`` with ``(Rabsolu ((pow (Rmax 1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (S (S (S (S O)))) (S (div2 (pred n)))))/(INR (fact (div2 (pred n))))-0))``.
-Apply H2; Unfold ge.
-Cut (le (mult (2) (S N0)) n).
-Intro; Apply le_S_n.
-Apply INR_le; Apply Rle_monotony_contra with (INR (2)).
-Simpl; Sup0.
-Do 2 Rewrite <- mult_INR; Apply le_INR.
-Apply le_trans with n.
-Apply H4.
-Assert H5 := (even_odd_cor n).
-Elim H5; Intros N1 H6.
-Elim H6; Intro.
-Cut (lt O N1).
-Intro.
-Rewrite H7.
-Apply mult_le.
-Replace (pred (mult (2) N1)) with (S (mult (2) (pred N1))).
-Rewrite div2_S_double.
-Replace (S (pred N1)) with N1.
-Apply le_n.
-Apply S_pred with O; Apply H8.
-Replace (mult (2) N1) with (S (S (mult (2) (pred N1)))).
-Reflexivity.
-Pattern 2 N1; Replace N1 with (S (pred N1)).
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Symmetry; Apply S_pred with O; Apply H8.
-Apply INR_lt.
-Apply Rlt_monotony_contra with (INR (2)).
-Simpl; Sup0.
-Rewrite Rmult_Or; Rewrite <- mult_INR.
-Apply lt_INR_0.
-Rewrite <- H7.
-Apply lt_le_trans with (2).
-Apply lt_O_Sn.
-Apply le_trans with (max (mult (2) (S N0)) (2)).
-Apply le_max_r.
-Apply H3.
-Rewrite H7.
-Replace (pred (S (mult (2) N1))) with (mult (2) N1).
-Rewrite div2_double.
-Replace (mult (2) (S N1)) with (S (S (mult (2) N1))).
-Apply le_n_Sn.
-Apply INR_eq; Do 2 Rewrite S_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Ring.
-Reflexivity.
-Apply le_trans with (max (mult (2) (S N0)) (2)).
-Apply le_max_l.
-Apply H3.
-Rewrite minus_R0; Apply Rabsolu_right.
-Apply Rle_sym1.
-Unfold Rdiv; Repeat Apply Rmult_le_pos.
-Apply pow_le.
-Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Apply RmaxLess1.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-DiscrR.
-Apply Rle_sym1.
-Unfold Rdiv; Apply Rmult_le_pos.
-Left; Sup0.
-Apply Rmult_le_pos.
-Apply pow_le.
-Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Apply RmaxLess1.
-Left; Apply Rlt_Rinv; Apply Rsqr_pos_lt; Apply INR_fact_neq_0.
-Qed.
-
-(**********)
-Lemma Reste_E_cv : (x,y:R) (Un_cv (Reste_E x y) R0).
-Intros; Assert H := (maj_Reste_cv_R0 x y).
-Unfold Un_cv in H; Unfold Un_cv; Intros; Elim (H ? H0); Intros.
-Exists (max x0 (1)); Intros.
-Unfold R_dist; Rewrite minus_R0.
-Apply Rle_lt_trans with (maj_Reste_E x y n).
-Apply Reste_E_maj.
-Apply lt_le_trans with (1).
-Apply lt_O_Sn.
-Apply le_trans with (max x0 (1)).
-Apply le_max_r.
-Apply H2.
-Replace (maj_Reste_E x y n) with (R_dist (maj_Reste_E x y n) R0).
-Apply H1.
-Unfold ge; Apply le_trans with (max x0 (1)).
-Apply le_max_l.
-Apply H2.
-Unfold R_dist; Rewrite minus_R0; Apply Rabsolu_right.
-Apply Rle_sym1; Apply Rle_trans with (Rabsolu (Reste_E x y n)).
-Apply Rabsolu_pos.
-Apply Reste_E_maj.
-Apply lt_le_trans with (1).
-Apply lt_O_Sn.
-Apply le_trans with (max x0 (1)).
-Apply le_max_r.
-Apply H2.
-Qed.
-
-(**********)
-Lemma exp_plus : (x,y:R) ``(exp (x+y))==(exp x)*(exp y)``.
-Intros; Assert H0 := (E1_cvg x).
-Assert H := (E1_cvg y).
-Assert H1 := (E1_cvg ``x+y``).
-EApply UL_sequence.
-Apply H1.
-Assert H2 := (CV_mult ? ? ? ? H0 H).
-Assert H3 := (CV_minus ? ? ? ? H2 (Reste_E_cv x y)).
-Unfold Un_cv; Unfold Un_cv in H3; Intros.
-Elim (H3 ? H4); Intros.
-Exists (S x0); Intros.
-Rewrite <- (exp_form x y n).
-Rewrite minus_R0 in H5.
-Apply H5.
-Unfold ge; Apply le_trans with (S x0).
-Apply le_n_Sn.
-Apply H6.
-Apply lt_le_trans with (S x0).
-Apply lt_O_Sn.
-Apply H6.
-Qed.
-
-(**********)
-Lemma exp_pos_pos : (x:R) ``0<x`` -> ``0<(exp x)``.
-Intros; Pose An := [N:nat]``/(INR (fact N))*(pow x N)``.
-Cut (Un_cv [n:nat](sum_f_R0 An n) (exp x)).
-Intro; Apply Rlt_le_trans with (sum_f_R0 An O).
-Unfold An; Simpl; Rewrite Rinv_R1; Rewrite Rmult_1r; Apply Rlt_R0_R1.
-Apply sum_incr.
-Assumption.
-Intro; Unfold An; Left; Apply Rmult_lt_pos.
-Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply (pow_lt ? n H).
-Unfold exp; Unfold projT1; Case (exist_exp x); Intro.
-Unfold exp_in; Unfold infinit_sum Un_cv; Trivial.
-Qed.
-
-(**********)
-Lemma exp_pos : (x:R) ``0<(exp x)``.
-Intro; Case (total_order_T R0 x); Intro.
-Elim s; Intro.
-Apply (exp_pos_pos ? a).
-Rewrite <- b; Rewrite exp_0; Apply Rlt_R0_R1.
-Replace (exp x) with ``1/(exp (-x))``.
-Unfold Rdiv; Apply Rmult_lt_pos.
-Apply Rlt_R0_R1.
-Apply Rlt_Rinv; Apply exp_pos_pos.
-Apply (Rgt_RO_Ropp ? r).
-Cut ``(exp (-x))<>0``.
-Intro; Unfold Rdiv; Apply r_Rmult_mult with ``(exp (-x))``.
-Rewrite Rmult_1l; Rewrite <- Rinv_r_sym.
-Rewrite <- exp_plus.
-Rewrite Rplus_Ropp_l; Rewrite exp_0; Reflexivity.
-Apply H.
-Apply H.
-Assert H := (exp_plus x ``-x``).
-Rewrite Rplus_Ropp_r in H; Rewrite exp_0 in H.
-Red; Intro; Rewrite H0 in H.
-Rewrite Rmult_Or in H.
-Elim R1_neq_R0; Assumption.
-Qed.
-
-(* ((exp h)-1)/h -> 0 quand h->0 *)
-Lemma derivable_pt_lim_exp_0 : (derivable_pt_lim exp ``0`` ``1``).
-Unfold derivable_pt_lim; Intros.
-Pose fn := [N:nat][x:R]``(pow x N)/(INR (fact (S N)))``.
-Cut (CVN_R fn).
-Intro; Cut (x:R)(sigTT ? [l:R](Un_cv [N:nat](SP fn N x) l)).
-Intro cv; Cut ((n:nat)(continuity (fn n))).
-Intro; Cut (continuity (SFL fn cv)).
-Intro; Unfold continuity in H1.
-Assert H2 := (H1 R0).
-Unfold continuity_pt in H2; Unfold continue_in in H2; Unfold limit1_in in H2; Unfold limit_in in H2; Simpl in H2; Unfold R_dist in H2.
-Elim (H2 ? H); Intros alp H3.
-Elim H3; Intros.
-Exists (mkposreal ? H4); Intros.
-Rewrite Rplus_Ol; Rewrite exp_0.
-Replace ``((exp h)-1)/h`` with (SFL fn cv h).
-Replace R1 with (SFL fn cv R0).
-Apply H5.
-Split.
-Unfold D_x no_cond; Split.
-Trivial.
-Apply (not_sym ? ? H6).
-Rewrite minus_R0; Apply H7.
-Unfold SFL.
-Case (cv ``0``); Intros.
-EApply UL_sequence.
-Apply u.
-Unfold Un_cv SP.
-Intros; Exists (1); Intros.
-Unfold R_dist; Rewrite decomp_sum.
-Rewrite (Rplus_sym (fn O R0)).
-Replace (fn O R0) with R1.
-Unfold Rminus; Rewrite Rplus_assoc; Rewrite Rplus_Ropp_r; Rewrite Rplus_Or.
-Replace (sum_f_R0 [i:nat](fn (S i) ``0``) (pred n)) with R0.
-Rewrite Rabsolu_R0; Apply H8.
-Symmetry; Apply sum_eq_R0; Intros.
-Unfold fn.
-Simpl.
-Unfold Rdiv; Do 2 Rewrite Rmult_Ol; Reflexivity.
-Unfold fn; Simpl.
-Unfold Rdiv; Rewrite Rinv_R1; Rewrite Rmult_1r; Reflexivity.
-Apply lt_le_trans with (1); [Apply lt_n_Sn | Apply H9].
-Unfold SFL exp.
-Unfold projT1.
-Case (cv h); Case (exist_exp h); Intros.
-EApply UL_sequence.
-Apply u.
-Unfold Un_cv; Intros.
-Unfold exp_in in e.
-Unfold infinit_sum in e.
-Cut ``0<eps0*(Rabsolu h)``.
-Intro; Elim (e ? H9); Intros N0 H10.
-Exists N0; Intros.
-Unfold R_dist.
-Apply Rlt_monotony_contra with ``(Rabsolu h)``.
-Apply Rabsolu_pos_lt; Assumption.
-Rewrite <- Rabsolu_mult.
-Rewrite Rminus_distr.
-Replace ``h*(x-1)/h`` with ``(x-1)``.
-Unfold R_dist in H10.
-Replace ``h*(SP fn n h)-(x-1)`` with (Rminus (sum_f_R0 [i:nat]``/(INR (fact i))*(pow h i)`` (S n)) x).
-Rewrite (Rmult_sym (Rabsolu h)).
-Apply H10.
-Unfold ge.
-Apply le_trans with (S N0).
-Apply le_n_Sn.
-Apply le_n_S; Apply H11.
-Rewrite decomp_sum.
-Replace ``/(INR (fact O))*(pow h O)`` with R1.
-Unfold Rminus.
-Rewrite Ropp_distr1.
-Rewrite Ropp_Ropp.
-Rewrite <- (Rplus_sym ``-x``).
-Rewrite <- (Rplus_sym ``-x+1``).
-Rewrite Rplus_assoc; Repeat Apply Rplus_plus_r.
-Replace (pred (S n)) with n; [Idtac | Reflexivity].
-Unfold SP.
-Rewrite scal_sum.
-Apply sum_eq; Intros.
-Unfold fn.
-Replace (pow h (S i)) with ``h*(pow h i)``.
-Unfold Rdiv; Ring.
-Simpl; Ring.
-Simpl; Rewrite Rinv_R1; Rewrite Rmult_1r; Reflexivity.
-Apply lt_O_Sn.
-Unfold Rdiv.
-Rewrite <- Rmult_assoc.
-Symmetry; Apply Rinv_r_simpl_m.
-Assumption.
-Apply Rmult_lt_pos.
-Apply H8.
-Apply Rabsolu_pos_lt; Assumption.
-Apply SFL_continuity; Assumption.
-Intro; Unfold fn.
-Replace [x:R]``(pow x n)/(INR (fact (S n)))`` with (div_fct (pow_fct n) (fct_cte (INR (fact (S n))))); [Idtac | Reflexivity].
-Apply continuity_div.
-Apply derivable_continuous; Apply (derivable_pow n).
-Apply derivable_continuous; Apply derivable_const.
-Intro; Unfold fct_cte; Apply INR_fact_neq_0.
-Apply (CVN_R_CVS ? X).
-Assert H0 := Alembert_exp.
-Unfold CVN_R.
-Intro; Unfold CVN_r.
-Apply Specif.existT with [N:nat]``(pow r N)/(INR (fact (S N)))``.
-Cut (SigT ? [l:R](Un_cv [n:nat](sum_f_R0 [k:nat](Rabsolu ``(pow r k)/(INR (fact (S k)))``) n) l)).
-Intro.
-Elim X; Intros.
-Exists x; Intros.
-Split.
-Apply p.
-Unfold Boule; Intros.
-Rewrite minus_R0 in H1.
-Unfold fn.
-Unfold Rdiv; Rewrite Rabsolu_mult.
-Cut ``0<(INR (fact (S n)))``.
-Intro.
-Rewrite (Rabsolu_right ``/(INR (fact (S n)))``).
-Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (S n)))``).
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply H2.
-Rewrite <- Pow_Rabsolu.
-Apply pow_maj_Rabs.
-Rewrite Rabsolu_Rabsolu; Left; Apply H1.
-Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply H2.
-Apply INR_fact_lt_0.
-Cut (r::R)<>``0``.
-Intro; Apply Alembert_C2.
-Intro; Apply Rabsolu_no_R0.
-Unfold Rdiv; Apply prod_neq_R0.
-Apply pow_nonzero; Assumption.
-Apply Rinv_neq_R0; Apply INR_fact_neq_0.
-Unfold Un_cv in H0.
-Unfold Un_cv; Intros.
-Cut ``0<eps0/r``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Apply (cond_pos r)]].
-Elim (H0 ? H3); Intros N0 H4.
-Exists N0; Intros.
-Cut (ge (S n) N0).
-Intro hyp_sn.
-Assert H6 := (H4 ? hyp_sn).
-Unfold R_dist in H6; Rewrite minus_R0 in H6.
-Rewrite Rabsolu_Rabsolu in H6.
-Unfold R_dist; Rewrite minus_R0.
-Rewrite Rabsolu_Rabsolu.
-Replace ``(Rabsolu ((pow r (S n))/(INR (fact (S (S n))))))/
- (Rabsolu ((pow r n)/(INR (fact (S n)))))`` with ``r*/(INR (fact (S (S n))))*//(INR (fact (S n)))``.
-Rewrite Rmult_assoc; Rewrite Rabsolu_mult.
-Rewrite (Rabsolu_right r).
-Apply Rlt_monotony_contra with ``/r``.
-Apply Rlt_Rinv; Apply (cond_pos r).
-Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps0).
-Apply H6.
-Assumption.
-Apply Rle_sym1; Left; Apply (cond_pos r).
-Unfold Rdiv.
-Repeat Rewrite Rabsolu_mult.
-Repeat Rewrite Rabsolu_Rinv.
-Rewrite Rinv_Rmult.
-Repeat Rewrite Rabsolu_right.
-Rewrite Rinv_Rinv.
-Rewrite (Rmult_sym r).
-Rewrite (Rmult_sym (pow r (S n))).
-Repeat Rewrite Rmult_assoc.
-Apply Rmult_mult_r.
-Rewrite (Rmult_sym r).
-Rewrite <- Rmult_assoc; Rewrite <- (Rmult_sym (INR (fact (S n)))).
-Apply Rmult_mult_r.
-Simpl.
-Rewrite Rmult_assoc; Rewrite <- Rinv_r_sym.
-Ring.
-Apply pow_nonzero; Assumption.
-Apply INR_fact_neq_0.
-Apply Rle_sym1; Left; Apply INR_fact_lt_0.
-Apply Rle_sym1; Left; Apply pow_lt; Apply (cond_pos r).
-Apply Rle_sym1; Left; Apply INR_fact_lt_0.
-Apply Rle_sym1; Left; Apply pow_lt; Apply (cond_pos r).
-Apply Rabsolu_no_R0; Apply pow_nonzero; Assumption.
-Apply Rinv_neq_R0; Apply Rabsolu_no_R0; Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Unfold ge; Apply le_trans with n.
-Apply H5.
-Apply le_n_Sn.
-Assert H1 := (cond_pos r); Red; Intro; Rewrite H2 in H1; Elim (Rlt_antirefl ? H1).
-Qed.
-
-(**********)
-Lemma derivable_pt_lim_exp : (x:R) (derivable_pt_lim exp x (exp x)).
-Intro; Assert H0 := derivable_pt_lim_exp_0.
-Unfold derivable_pt_lim in H0; Unfold derivable_pt_lim; Intros.
-Cut ``0<eps/(exp x)``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Apply H | Apply Rlt_Rinv; Apply exp_pos]].
-Elim (H0 ? H1); Intros del H2.
-Exists del; Intros.
-Assert H5 := (H2 ? H3 H4).
-Rewrite Rplus_Ol in H5; Rewrite exp_0 in H5.
-Replace ``((exp (x+h))-(exp x))/h-(exp x)`` with ``(exp x)*(((exp h)-1)/h-1)``.
-Rewrite Rabsolu_mult; Rewrite (Rabsolu_right (exp x)).
-Apply Rlt_monotony_contra with ``/(exp x)``.
-Apply Rlt_Rinv; Apply exp_pos.
-Rewrite <- Rmult_assoc; Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l; Rewrite <- (Rmult_sym eps).
-Apply H5.
-Assert H6 := (exp_pos x); Red; Intro; Rewrite H7 in H6; Elim (Rlt_antirefl ? H6).
-Apply Rle_sym1; Left; Apply exp_pos.
-Rewrite Rminus_distr.
-Rewrite Rmult_1r; Unfold Rdiv; Rewrite <- Rmult_assoc; Rewrite Rminus_distr.
-Rewrite Rmult_1r; Rewrite exp_plus; Reflexivity.
-Qed.