summaryrefslogtreecommitdiff
path: root/theories7/Reals/Cos_plus.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Cos_plus.v')
-rw-r--r--theories7/Reals/Cos_plus.v1017
1 files changed, 0 insertions, 1017 deletions
diff --git a/theories7/Reals/Cos_plus.v b/theories7/Reals/Cos_plus.v
deleted file mode 100644
index 481e51bf..00000000
--- a/theories7/Reals/Cos_plus.v
+++ /dev/null
@@ -1,1017 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Cos_plus.v,v 1.1.2.1 2004/07/16 19:31:31 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require SeqSeries.
-Require Rtrigo_def.
-Require Cos_rel.
-Require Max.
-V7only [Import nat_scope.]. Open Local Scope nat_scope.
-V7only [Import R_scope.]. Open Local Scope R_scope.
-
-Definition Majxy [x,y:R] : nat->R := [n:nat](Rdiv (pow (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))) (mult (4) (S n))) (INR (fact n))).
-
-Lemma Majxy_cv_R0 : (x,y:R) (Un_cv (Majxy x y) R0).
-Intros.
-Pose C := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))).
-Pose C0 := (pow C (4)).
-Cut ``0<C``.
-Intro.
-Cut ``0<C0``.
-Intro.
-Assert H1 := (cv_speed_pow_fact C0).
-Unfold Un_cv in H1; Unfold R_dist in H1.
-Unfold Un_cv; Unfold R_dist; Intros.
-Cut ``0<eps/C0``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Assumption]].
-Elim (H1 ``eps/C0`` H3); Intros N0 H4.
-Exists N0; Intros.
-Replace (Majxy x y n) with ``(pow C0 (S n))/(INR (fact n))``.
-Simpl.
-Apply Rlt_monotony_contra with ``(Rabsolu (/C0))``.
-Apply Rabsolu_pos_lt.
-Apply Rinv_neq_R0.
-Red; Intro; Rewrite H6 in H0; Elim (Rlt_antirefl ? H0).
-Rewrite <- Rabsolu_mult.
-Unfold Rminus; Rewrite Rmult_Rplus_distr.
-Rewrite Ropp_O; Rewrite Rmult_Or.
-Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l.
-Rewrite (Rabsolu_right ``/C0``).
-Rewrite <- (Rmult_sym eps).
-Replace ``(pow C0 n)*/(INR (fact n))+0`` with ``(pow C0 n)*/(INR (fact n))-0``; [Idtac | Ring].
-Unfold Rdiv in H4; Apply H4; Assumption.
-Apply Rle_sym1; Left; Apply Rlt_Rinv; Assumption.
-Red; Intro; Rewrite H6 in H0; Elim (Rlt_antirefl ? H0).
-Unfold Majxy.
-Unfold C0.
-Rewrite pow_mult.
-Unfold C; Reflexivity.
-Unfold C0; Apply pow_lt; Assumption.
-Apply Rlt_le_trans with R1.
-Apply Rlt_R0_R1.
-Unfold C.
-Apply RmaxLess1.
-Qed.
-
-Lemma reste1_maj : (x,y:R;N:nat) (lt O N) -> ``(Rabsolu (Reste1 x y N))<=(Majxy x y (pred N))``.
-Intros.
-Pose C := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))).
-Unfold Reste1.
-Apply Rle_trans with (sum_f_R0
- [k:nat]
- (Rabsolu (sum_f_R0
- [l:nat]
- ``(pow ( -1) (S (plus l k)))/
- (INR (fact (mult (S (S O)) (S (plus l k)))))*
- (pow x (mult (S (S O)) (S (plus l k))))*
- (pow ( -1) (minus N l))/
- (INR (fact (mult (S (S O)) (minus N l))))*
- (pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))))
- (pred N)).
-Apply (sum_Rabsolu [k:nat]
- (sum_f_R0
- [l:nat]
- ``(pow ( -1) (S (plus l k)))/
- (INR (fact (mult (S (S O)) (S (plus l k)))))*
- (pow x (mult (S (S O)) (S (plus l k))))*
- (pow ( -1) (minus N l))/
- (INR (fact (mult (S (S O)) (minus N l))))*
- (pow y (mult (S (S O)) (minus N l)))`` (pred (minus N k))) (pred N)).
-Apply Rle_trans with (sum_f_R0
- [k:nat]
- (sum_f_R0
- [l:nat]
- (Rabsolu (``(pow ( -1) (S (plus l k)))/
- (INR (fact (mult (S (S O)) (S (plus l k)))))*
- (pow x (mult (S (S O)) (S (plus l k))))*
- (pow ( -1) (minus N l))/
- (INR (fact (mult (S (S O)) (minus N l))))*
- (pow y (mult (S (S O)) (minus N l)))``)) (pred (minus N k)))
- (pred N)).
-Apply sum_Rle.
-Intros.
-Apply (sum_Rabsolu [l:nat]
- ``(pow ( -1) (S (plus l n)))/
- (INR (fact (mult (S (S O)) (S (plus l n)))))*
- (pow x (mult (S (S O)) (S (plus l n))))*
- (pow ( -1) (minus N l))/
- (INR (fact (mult (S (S O)) (minus N l))))*
- (pow y (mult (S (S O)) (minus N l)))`` (pred (minus N n))).
-Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(INR (mult (fact (mult (S (S O)) (S (plus l k)))) (fact (mult (S (S O)) (minus N l)))))*(pow C (mult (S (S O)) (S (plus N k))))`` (pred (minus N k))) (pred N)).
-Apply sum_Rle; Intros.
-Apply sum_Rle; Intros.
-Unfold Rdiv; Repeat Rewrite Rabsolu_mult.
-Do 2 Rewrite pow_1_abs.
-Do 2 Rewrite Rmult_1l.
-Rewrite (Rabsolu_right ``/(INR (fact (mult (S (S O)) (S (plus n0 n)))))``).
-Rewrite (Rabsolu_right ``/(INR (fact (mult (S (S O)) (minus N n0))))``).
-Rewrite mult_INR.
-Rewrite Rinv_Rmult.
-Repeat Rewrite Rmult_assoc.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Rewrite <- Rmult_assoc.
-Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (minus N n0))))``).
-Rewrite Rmult_assoc.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Do 2 Rewrite <- Pow_Rabsolu.
-Apply Rle_trans with ``(pow (Rabsolu x) (mult (S (S O)) (S (plus n0 n))))*(pow C (mult (S (S O)) (minus N n0)))``.
-Apply Rle_monotony.
-Apply pow_le; Apply Rabsolu_pos.
-Apply pow_incr.
-Split.
-Apply Rabsolu_pos.
-Unfold C.
-Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)); Apply RmaxLess2.
-Apply Rle_trans with ``(pow C (mult (S (S O)) (S (plus n0 n))))*(pow C (mult (S (S O)) (minus N n0)))``.
-Do 2 Rewrite <- (Rmult_sym ``(pow C (mult (S (S O)) (minus N n0)))``).
-Apply Rle_monotony.
-Apply pow_le.
-Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Unfold C; Apply RmaxLess1.
-Apply pow_incr.
-Split.
-Apply Rabsolu_pos.
-Unfold C; Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)).
-Apply RmaxLess1.
-Apply RmaxLess2.
-Right.
-Replace (mult (2) (S (plus N n))) with (plus (mult (2) (minus N n0)) (mult (2) (S (plus n0 n)))).
-Rewrite pow_add.
-Apply Rmult_sym.
-Apply INR_eq; Rewrite plus_INR; Do 3 Rewrite mult_INR.
-Rewrite minus_INR.
-Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Ring.
-Apply le_trans with (pred (minus N n)).
-Exact H1.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_sym1; Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_trans with (sum_f_R0
- [k:nat]
- (sum_f_R0
- [l:nat]
- ``/(INR
- (mult (fact (mult (S (S O)) (S (plus l k))))
- (fact (mult (S (S O)) (minus N l)))))*
- (pow C (mult (S (S (S (S O)))) N))`` (pred (minus N k)))
- (pred N)).
-Apply sum_Rle; Intros.
-Apply sum_Rle; Intros.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv.
-Rewrite mult_INR; Apply Rmult_lt_pos; Apply INR_fact_lt_0.
-Apply Rle_pow.
-Unfold C; Apply RmaxLess1.
-Replace (mult (4) N) with (mult (2) (mult (2) N)); [Idtac | Ring].
-Apply mult_le.
-Replace (mult (2) N) with (S (plus N (pred N))).
-Apply le_n_S.
-Apply le_reg_l; Assumption.
-Rewrite pred_of_minus.
-Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR; Rewrite minus_INR.
-Repeat Rewrite S_INR; Ring.
-Apply lt_le_S; Assumption.
-Apply Rle_trans with (sum_f_R0
- [k:nat]
- (sum_f_R0
- [l:nat]
- ``(pow C (mult (S (S (S (S O)))) N))*(Rsqr (/(INR (fact (S (plus N k))))))`` (pred (minus N k)))
- (pred N)).
-Apply sum_Rle; Intros.
-Apply sum_Rle; Intros.
-Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) N))``).
-Apply Rle_monotony.
-Apply pow_le.
-Left; Apply Rlt_le_trans with R1.
-Apply Rlt_R0_R1.
-Unfold C; Apply RmaxLess1.
-Replace ``/(INR
- (mult (fact (mult (S (S O)) (S (plus n0 n))))
- (fact (mult (S (S O)) (minus N n0)))))`` with ``(Binomial.C (mult (S (S O)) (S (plus N n))) (mult (S (S O)) (S (plus n0 n))))/(INR (fact (mult (S (S O)) (S (plus N n)))))``.
-Apply Rle_trans with ``(Binomial.C (mult (S (S O)) (S (plus N n))) (S (plus N n)))/(INR (fact (mult (S (S O)) (S (plus N n)))))``.
-Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S (plus N n)))))``).
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply C_maj.
-Apply mult_le.
-Apply le_n_S.
-Apply le_reg_r.
-Apply le_trans with (pred (minus N n)).
-Assumption.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Right.
-Unfold Rdiv; Rewrite Rmult_sym.
-Unfold Binomial.C.
-Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l.
-Replace (minus (mult (2) (S (plus N n))) (S (plus N n))) with (S (plus N n)).
-Rewrite Rinv_Rmult.
-Unfold Rsqr; Reflexivity.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_eq; Rewrite S_INR; Rewrite minus_INR.
-Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring.
-Apply le_n_2n.
-Apply INR_fact_neq_0.
-Unfold Rdiv; Rewrite Rmult_sym.
-Unfold Binomial.C.
-Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l.
-Replace (minus (mult (2) (S (plus N n))) (mult (2) (S (plus n0 n)))) with (mult (2) (minus N n0)).
-Rewrite mult_INR.
-Reflexivity.
-Apply INR_eq; Rewrite minus_INR.
-Do 3 Rewrite mult_INR; Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite minus_INR.
-Ring.
-Apply le_trans with (pred (minus N n)).
-Assumption.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply mult_le.
-Apply le_n_S.
-Apply le_reg_r.
-Apply le_trans with (pred (minus N n)).
-Assumption.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply INR_fact_neq_0.
-Apply Rle_trans with (sum_f_R0 [k:nat]``(INR N)/(INR (fact (S N)))*(pow C (mult (S (S (S (S O)))) N))`` (pred N)).
-Apply sum_Rle; Intros.
-Rewrite <- (scal_sum [_:nat]``(pow C (mult (S (S (S (S O)))) N))`` (pred (minus N n)) ``(Rsqr (/(INR (fact (S (plus N n))))))``).
-Rewrite sum_cte.
-Rewrite <- Rmult_assoc.
-Do 2 Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) N))``).
-Rewrite Rmult_assoc.
-Apply Rle_monotony.
-Apply pow_le.
-Left; Apply Rlt_le_trans with R1.
-Apply Rlt_R0_R1.
-Unfold C; Apply RmaxLess1.
-Apply Rle_trans with ``(Rsqr (/(INR (fact (S (plus N n))))))*(INR N)``.
-Apply Rle_monotony.
-Apply pos_Rsqr.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_INR.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Rewrite Rmult_sym; Unfold Rdiv; Apply Rle_monotony.
-Apply pos_INR.
-Apply Rle_trans with ``/(INR (fact (S (plus N n))))``.
-Pattern 2 ``/(INR (fact (S (plus N n))))``; Rewrite <- Rmult_1r.
-Unfold Rsqr.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_monotony_contra with ``(INR (fact (S (plus N n))))``.
-Apply INR_fact_lt_0.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r.
-Replace R1 with (INR (S O)).
-Apply le_INR.
-Apply lt_le_S.
-Apply INR_lt; Apply INR_fact_lt_0.
-Reflexivity.
-Apply INR_fact_neq_0.
-Apply Rle_monotony_contra with ``(INR (fact (S (plus N n))))``.
-Apply INR_fact_lt_0.
-Rewrite <- Rinv_r_sym.
-Apply Rle_monotony_contra with ``(INR (fact (S N)))``.
-Apply INR_fact_lt_0.
-Rewrite Rmult_1r.
-Rewrite (Rmult_sym (INR (fact (S N)))).
-Rewrite Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r.
-Apply le_INR.
-Apply fact_growing.
-Apply le_n_S.
-Apply le_plus_l.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Rewrite sum_cte.
-Apply Rle_trans with ``(pow C (mult (S (S (S (S O)))) N))/(INR (fact (pred N)))``.
-Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) N))``).
-Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony.
-Apply pow_le.
-Left; Apply Rlt_le_trans with R1.
-Apply Rlt_R0_R1.
-Unfold C; Apply RmaxLess1.
-Cut (S (pred N)) = N.
-Intro; Rewrite H0.
-Pattern 2 N; Rewrite <- H0.
-Do 2 Rewrite fact_simpl.
-Rewrite H0.
-Repeat Rewrite mult_INR.
-Repeat Rewrite Rinv_Rmult.
-Rewrite (Rmult_sym ``/(INR (S N))``).
-Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1l.
-Pattern 2 ``/(INR (fact (pred N)))``; Rewrite <- Rmult_1r.
-Rewrite Rmult_assoc.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_monotony_contra with (INR (S N)).
-Apply lt_INR_0; Apply lt_O_Sn.
-Rewrite <- Rmult_assoc; Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r; Rewrite Rmult_1l.
-Apply le_INR; Apply le_n_Sn.
-Apply not_O_INR; Discriminate.
-Apply not_O_INR.
-Red; Intro; Rewrite H1 in H; Elim (lt_n_n ? H).
-Apply not_O_INR.
-Red; Intro; Rewrite H1 in H; Elim (lt_n_n ? H).
-Apply INR_fact_neq_0.
-Apply not_O_INR; Discriminate.
-Apply prod_neq_R0.
-Apply not_O_INR.
-Red; Intro; Rewrite H1 in H; Elim (lt_n_n ? H).
-Apply INR_fact_neq_0.
-Symmetry; Apply S_pred with O; Assumption.
-Right.
-Unfold Majxy.
-Unfold C.
-Replace (S (pred N)) with N.
-Reflexivity.
-Apply S_pred with O; Assumption.
-Qed.
-
-Lemma reste2_maj : (x,y:R;N:nat) (lt O N) -> ``(Rabsolu (Reste2 x y N))<=(Majxy x y N)``.
-Intros.
-Pose C := (Rmax R1 (Rmax (Rabsolu x) (Rabsolu y))).
-Unfold Reste2.
-Apply Rle_trans with (sum_f_R0
- [k:nat]
- (Rabsolu (sum_f_R0
- [l:nat]
- ``(pow ( -1) (S (plus l k)))/
- (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*
- (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*
- (pow ( -1) (minus N l))/
- (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*
- (pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))))
- (pred N)).
-Apply (sum_Rabsolu [k:nat]
- (sum_f_R0
- [l:nat]
- ``(pow ( -1) (S (plus l k)))/
- (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*
- (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*
- (pow ( -1) (minus N l))/
- (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*
- (pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N k))) (pred N)).
-Apply Rle_trans with (sum_f_R0
- [k:nat]
- (sum_f_R0
- [l:nat]
- (Rabsolu (``(pow ( -1) (S (plus l k)))/
- (INR (fact (plus (mult (S (S O)) (S (plus l k))) (S O))))*
- (pow x (plus (mult (S (S O)) (S (plus l k))) (S O)))*
- (pow ( -1) (minus N l))/
- (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*
- (pow y (plus (mult (S (S O)) (minus N l)) (S O)))``)) (pred (minus N k)))
- (pred N)).
-Apply sum_Rle.
-Intros.
-Apply (sum_Rabsolu [l:nat]
- ``(pow ( -1) (S (plus l n)))/
- (INR (fact (plus (mult (S (S O)) (S (plus l n))) (S O))))*
- (pow x (plus (mult (S (S O)) (S (plus l n))) (S O)))*
- (pow ( -1) (minus N l))/
- (INR (fact (plus (mult (S (S O)) (minus N l)) (S O))))*
- (pow y (plus (mult (S (S O)) (minus N l)) (S O)))`` (pred (minus N n))).
-Apply Rle_trans with (sum_f_R0 [k:nat](sum_f_R0 [l:nat]``/(INR (mult (fact (plus (mult (S (S O)) (S (plus l k))) (S O))) (fact (plus (mult (S (S O)) (minus N l)) (S O)))))*(pow C (mult (S (S O)) (S (S (plus N k)))))`` (pred (minus N k))) (pred N)).
-Apply sum_Rle; Intros.
-Apply sum_Rle; Intros.
-Unfold Rdiv; Repeat Rewrite Rabsolu_mult.
-Do 2 Rewrite pow_1_abs.
-Do 2 Rewrite Rmult_1l.
-Rewrite (Rabsolu_right ``/(INR (fact (plus (mult (S (S O)) (S (plus n0 n))) (S O))))``).
-Rewrite (Rabsolu_right ``/(INR (fact (plus (mult (S (S O)) (minus N n0)) (S O))))``).
-Rewrite mult_INR.
-Rewrite Rinv_Rmult.
-Repeat Rewrite Rmult_assoc.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Rewrite <- Rmult_assoc.
-Rewrite <- (Rmult_sym ``/(INR (fact (plus (mult (S (S O)) (minus N n0)) (S O))))``).
-Rewrite Rmult_assoc.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Do 2 Rewrite <- Pow_Rabsolu.
-Apply Rle_trans with ``(pow (Rabsolu x) (plus (mult (S (S O)) (S (plus n0 n))) (S O)))*(pow C (plus (mult (S (S O)) (minus N n0)) (S O)))``.
-Apply Rle_monotony.
-Apply pow_le; Apply Rabsolu_pos.
-Apply pow_incr.
-Split.
-Apply Rabsolu_pos.
-Unfold C.
-Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)); Apply RmaxLess2.
-Apply Rle_trans with ``(pow C (plus (mult (S (S O)) (S (plus n0 n))) (S O)))*(pow C (plus (mult (S (S O)) (minus N n0)) (S O)))``.
-Do 2 Rewrite <- (Rmult_sym ``(pow C (plus (mult (S (S O)) (minus N n0)) (S O)))``).
-Apply Rle_monotony.
-Apply pow_le.
-Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Unfold C; Apply RmaxLess1.
-Apply pow_incr.
-Split.
-Apply Rabsolu_pos.
-Unfold C; Apply Rle_trans with (Rmax (Rabsolu x) (Rabsolu y)).
-Apply RmaxLess1.
-Apply RmaxLess2.
-Right.
-Replace (mult (2) (S (S (plus N n)))) with (plus (plus (mult (2) (minus N n0)) (S O)) (plus (mult (2) (S (plus n0 n))) (S O))).
-Repeat Rewrite pow_add.
-Ring.
-Apply INR_eq; Repeat Rewrite plus_INR; Do 3 Rewrite mult_INR.
-Rewrite minus_INR.
-Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Ring.
-Apply le_trans with (pred (minus N n)).
-Exact H1.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply Rle_sym1; Left; Apply Rlt_Rinv.
-Apply INR_fact_lt_0.
-Apply Rle_sym1; Left; Apply Rlt_Rinv.
-Apply INR_fact_lt_0.
-Apply Rle_trans with (sum_f_R0
- [k:nat]
- (sum_f_R0
- [l:nat]
- ``/(INR
- (mult (fact (plus (mult (S (S O)) (S (plus l k))) (S O)))
- (fact (plus (mult (S (S O)) (minus N l)) (S O)))))*
- (pow C (mult (S (S (S (S O)))) (S N)))`` (pred (minus N k)))
- (pred N)).
-Apply sum_Rle; Intros.
-Apply sum_Rle; Intros.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv.
-Rewrite mult_INR; Apply Rmult_lt_pos; Apply INR_fact_lt_0.
-Apply Rle_pow.
-Unfold C; Apply RmaxLess1.
-Replace (mult (4) (S N)) with (mult (2) (mult (2) (S N))); [Idtac | Ring].
-Apply mult_le.
-Replace (mult (2) (S N)) with (S (S (plus N N))).
-Repeat Apply le_n_S.
-Apply le_reg_l.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply INR_eq; Do 2Rewrite S_INR; Rewrite plus_INR; Rewrite mult_INR.
-Repeat Rewrite S_INR; Ring.
-Apply Rle_trans with (sum_f_R0
- [k:nat]
- (sum_f_R0
- [l:nat]
- ``(pow C (mult (S (S (S (S O)))) (S N)))*(Rsqr (/(INR (fact (S (S (plus N k)))))))`` (pred (minus N k)))
- (pred N)).
-Apply sum_Rle; Intros.
-Apply sum_Rle; Intros.
-Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) (S N)))``).
-Apply Rle_monotony.
-Apply pow_le.
-Left; Apply Rlt_le_trans with R1.
-Apply Rlt_R0_R1.
-Unfold C; Apply RmaxLess1.
-Replace ``/(INR
- (mult (fact (plus (mult (S (S O)) (S (plus n0 n))) (S O)))
- (fact (plus (mult (S (S O)) (minus N n0)) (S O)))))`` with ``(Binomial.C (mult (S (S O)) (S (S (plus N n)))) (plus (mult (S (S O)) (S (plus n0 n))) (S O)))/(INR (fact (mult (S (S O)) (S (S (plus N n))))))``.
-Apply Rle_trans with ``(Binomial.C (mult (S (S O)) (S (S (plus N n)))) (S (S (plus N n))))/(INR (fact (mult (S (S O)) (S (S (plus N n))))))``.
-Unfold Rdiv; Do 2 Rewrite <- (Rmult_sym ``/(INR (fact (mult (S (S O)) (S (S (plus N n))))))``).
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply C_maj.
-Apply le_trans with (mult (2) (S (S (plus n0 n)))).
-Replace (mult (2) (S (S (plus n0 n)))) with (S (plus (mult (2) (S (plus n0 n))) (1))).
-Apply le_n_Sn.
-Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring.
-Apply mult_le.
-Repeat Apply le_n_S.
-Apply le_reg_r.
-Apply le_trans with (pred (minus N n)).
-Assumption.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Right.
-Unfold Rdiv; Rewrite Rmult_sym.
-Unfold Binomial.C.
-Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l.
-Replace (minus (mult (2) (S (S (plus N n)))) (S (S (plus N n)))) with (S (S (plus N n))).
-Rewrite Rinv_Rmult.
-Unfold Rsqr; Reflexivity.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Apply INR_eq; Do 2 Rewrite S_INR; Rewrite minus_INR.
-Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring.
-Apply le_n_2n.
-Apply INR_fact_neq_0.
-Unfold Rdiv; Rewrite Rmult_sym.
-Unfold Binomial.C.
-Unfold Rdiv; Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1l.
-Replace (minus (mult (2) (S (S (plus N n)))) (plus (mult (2) (S (plus n0 n))) (S O))) with (plus (mult (2) (minus N n0)) (S O)).
-Rewrite mult_INR.
-Reflexivity.
-Apply INR_eq; Rewrite minus_INR.
-Do 2 Rewrite plus_INR; Do 3 Rewrite mult_INR; Repeat Rewrite S_INR; Do 2 Rewrite plus_INR; Rewrite minus_INR.
-Ring.
-Apply le_trans with (pred (minus N n)).
-Assumption.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply le_trans with (mult (2) (S (S (plus n0 n)))).
-Replace (mult (2) (S (S (plus n0 n)))) with (S (plus (mult (2) (S (plus n0 n))) (1))).
-Apply le_n_Sn.
-Apply INR_eq; Rewrite S_INR; Rewrite plus_INR; Do 2 Rewrite mult_INR; Repeat Rewrite S_INR; Rewrite plus_INR; Ring.
-Apply mult_le.
-Repeat Apply le_n_S.
-Apply le_reg_r.
-Apply le_trans with (pred (minus N n)).
-Assumption.
-Apply le_S_n.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_trans with N.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply le_n_Sn.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply INR_fact_neq_0.
-Apply Rle_trans with (sum_f_R0 [k:nat]``(INR N)/(INR (fact (S (S N))))*(pow C (mult (S (S (S (S O)))) (S N)))`` (pred N)).
-Apply sum_Rle; Intros.
-Rewrite <- (scal_sum [_:nat]``(pow C (mult (S (S (S (S O)))) (S N)))`` (pred (minus N n)) ``(Rsqr (/(INR (fact (S (S (plus N n)))))))``).
-Rewrite sum_cte.
-Rewrite <- Rmult_assoc.
-Do 2 Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) (S N)))``).
-Rewrite Rmult_assoc.
-Apply Rle_monotony.
-Apply pow_le.
-Left; Apply Rlt_le_trans with R1.
-Apply Rlt_R0_R1.
-Unfold C; Apply RmaxLess1.
-Apply Rle_trans with ``(Rsqr (/(INR (fact (S (S (plus N n)))))))*(INR N)``.
-Apply Rle_monotony.
-Apply pos_Rsqr.
-Replace (S (pred (minus N n))) with (minus N n).
-Apply le_INR.
-Apply simpl_le_plus_l with n.
-Rewrite <- le_plus_minus.
-Apply le_plus_r.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Apply S_pred with O.
-Apply simpl_lt_plus_l with n.
-Rewrite <- le_plus_minus.
-Replace (plus n O) with n; [Idtac | Ring].
-Apply le_lt_trans with (pred N).
-Assumption.
-Apply lt_pred_n_n; Assumption.
-Apply le_trans with (pred N).
-Assumption.
-Apply le_pred_n.
-Rewrite Rmult_sym; Unfold Rdiv; Apply Rle_monotony.
-Apply pos_INR.
-Apply Rle_trans with ``/(INR (fact (S (S (plus N n)))))``.
-Pattern 2 ``/(INR (fact (S (S (plus N n)))))``; Rewrite <- Rmult_1r.
-Unfold Rsqr.
-Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply Rle_monotony_contra with ``(INR (fact (S (S (plus N n)))))``.
-Apply INR_fact_lt_0.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r.
-Replace R1 with (INR (S O)).
-Apply le_INR.
-Apply lt_le_S.
-Apply INR_lt; Apply INR_fact_lt_0.
-Reflexivity.
-Apply INR_fact_neq_0.
-Apply Rle_monotony_contra with ``(INR (fact (S (S (plus N n)))))``.
-Apply INR_fact_lt_0.
-Rewrite <- Rinv_r_sym.
-Apply Rle_monotony_contra with ``(INR (fact (S (S N))))``.
-Apply INR_fact_lt_0.
-Rewrite Rmult_1r.
-Rewrite (Rmult_sym (INR (fact (S (S N))))).
-Rewrite Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r.
-Apply le_INR.
-Apply fact_growing.
-Repeat Apply le_n_S.
-Apply le_plus_l.
-Apply INR_fact_neq_0.
-Apply INR_fact_neq_0.
-Rewrite sum_cte.
-Apply Rle_trans with ``(pow C (mult (S (S (S (S O)))) (S N)))/(INR (fact N))``.
-Rewrite <- (Rmult_sym ``(pow C (mult (S (S (S (S O)))) (S N)))``).
-Unfold Rdiv; Rewrite Rmult_assoc; Apply Rle_monotony.
-Apply pow_le.
-Left; Apply Rlt_le_trans with R1.
-Apply Rlt_R0_R1.
-Unfold C; Apply RmaxLess1.
-Cut (S (pred N)) = N.
-Intro; Rewrite H0.
-Do 2 Rewrite fact_simpl.
-Repeat Rewrite mult_INR.
-Repeat Rewrite Rinv_Rmult.
-Apply Rle_trans with ``(INR (S (S N)))*(/(INR (S (S N)))*(/(INR (S N))*/(INR (fact N))))*
- (INR N)``.
-Repeat Rewrite Rmult_assoc.
-Rewrite (Rmult_sym (INR N)).
-Rewrite (Rmult_sym (INR (S (S N)))).
-Apply Rle_monotony.
-Repeat Apply Rmult_le_pos.
-Left; Apply Rlt_Rinv; Apply lt_INR_0; Apply lt_O_Sn.
-Left; Apply Rlt_Rinv; Apply lt_INR_0; Apply lt_O_Sn.
-Left; Apply Rlt_Rinv.
-Apply INR_fact_lt_0.
-Apply pos_INR.
-Apply le_INR.
-Apply le_trans with (S N); Apply le_n_Sn.
-Repeat Rewrite <- Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1l.
-Apply Rle_trans with ``/(INR (S N))*/(INR (fact N))*(INR (S N))``.
-Repeat Rewrite Rmult_assoc.
-Repeat Apply Rle_monotony.
-Left; Apply Rlt_Rinv; Apply lt_INR_0; Apply lt_O_Sn.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Apply le_INR; Apply le_n_Sn.
-Rewrite (Rmult_sym ``/(INR (S N))``).
-Rewrite Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r; Right; Reflexivity.
-Apply not_O_INR; Discriminate.
-Apply not_O_INR; Discriminate.
-Apply not_O_INR; Discriminate.
-Apply INR_fact_neq_0.
-Apply not_O_INR; Discriminate.
-Apply prod_neq_R0; [Apply not_O_INR; Discriminate | Apply INR_fact_neq_0].
-Symmetry; Apply S_pred with O; Assumption.
-Right.
-Unfold Majxy.
-Unfold C.
-Reflexivity.
-Qed.
-
-Lemma reste1_cv_R0 : (x,y:R) (Un_cv (Reste1 x y) R0).
-Intros.
-Assert H := (Majxy_cv_R0 x y).
-Unfold Un_cv in H; Unfold R_dist in H.
-Unfold Un_cv; Unfold R_dist; Intros.
-Elim (H eps H0); Intros N0 H1.
-Exists (S N0); Intros.
-Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or.
-Apply Rle_lt_trans with (Rabsolu (Majxy x y (pred n))).
-Rewrite (Rabsolu_right (Majxy x y (pred n))).
-Apply reste1_maj.
-Apply lt_le_trans with (S N0).
-Apply lt_O_Sn.
-Assumption.
-Apply Rle_sym1.
-Unfold Majxy.
-Unfold Rdiv; Apply Rmult_le_pos.
-Apply pow_le.
-Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Apply RmaxLess1.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Replace (Majxy x y (pred n)) with ``(Majxy x y (pred n))-0``; [Idtac | Ring].
-Apply H1.
-Unfold ge; Apply le_S_n.
-Replace (S (pred n)) with n.
-Assumption.
-Apply S_pred with O.
-Apply lt_le_trans with (S N0); [Apply lt_O_Sn | Assumption].
-Qed.
-
-Lemma reste2_cv_R0 : (x,y:R) (Un_cv (Reste2 x y) R0).
-Intros.
-Assert H := (Majxy_cv_R0 x y).
-Unfold Un_cv in H; Unfold R_dist in H.
-Unfold Un_cv; Unfold R_dist; Intros.
-Elim (H eps H0); Intros N0 H1.
-Exists (S N0); Intros.
-Unfold Rminus; Rewrite Ropp_O; Rewrite Rplus_Or.
-Apply Rle_lt_trans with (Rabsolu (Majxy x y n)).
-Rewrite (Rabsolu_right (Majxy x y n)).
-Apply reste2_maj.
-Apply lt_le_trans with (S N0).
-Apply lt_O_Sn.
-Assumption.
-Apply Rle_sym1.
-Unfold Majxy.
-Unfold Rdiv; Apply Rmult_le_pos.
-Apply pow_le.
-Apply Rle_trans with R1.
-Left; Apply Rlt_R0_R1.
-Apply RmaxLess1.
-Left; Apply Rlt_Rinv; Apply INR_fact_lt_0.
-Replace (Majxy x y n) with ``(Majxy x y n)-0``; [Idtac | Ring].
-Apply H1.
-Unfold ge; Apply le_trans with (S N0).
-Apply le_n_Sn.
-Exact H2.
-Qed.
-
-Lemma reste_cv_R0 : (x,y:R) (Un_cv (Reste x y) R0).
-Intros.
-Unfold Reste.
-Pose An := [n:nat](Reste2 x y n).
-Pose Bn := [n:nat](Reste1 x y (S n)).
-Cut (Un_cv [n:nat]``(An n)-(Bn n)`` ``0-0``) -> (Un_cv [N:nat]``(Reste2 x y N)-(Reste1 x y (S N))`` ``0``).
-Intro.
-Apply H.
-Apply CV_minus.
-Unfold An.
-Replace [n:nat](Reste2 x y n) with (Reste2 x y).
-Apply reste2_cv_R0.
-Reflexivity.
-Unfold Bn.
-Assert H0 := (reste1_cv_R0 x y).
-Unfold Un_cv in H0; Unfold R_dist in H0.
-Unfold Un_cv; Unfold R_dist; Intros.
-Elim (H0 eps H1); Intros N0 H2.
-Exists N0; Intros.
-Apply H2.
-Unfold ge; Apply le_trans with (S N0).
-Apply le_n_Sn.
-Apply le_n_S; Assumption.
-Unfold An Bn.
-Intro.
-Replace R0 with ``0-0``; [Idtac | Ring].
-Exact H.
-Qed.
-
-Theorem cos_plus : (x,y:R) ``(cos (x+y))==(cos x)*(cos y)-(sin x)*(sin y)``.
-Intros.
-Cut (Un_cv (C1 x y) ``(cos x)*(cos y)-(sin x)*(sin y)``).
-Cut (Un_cv (C1 x y) ``(cos (x+y))``).
-Intros.
-Apply UL_sequence with (C1 x y); Assumption.
-Apply C1_cvg.
-Unfold Un_cv; Unfold R_dist.
-Intros.
-Assert H0 := (A1_cvg x).
-Assert H1 := (A1_cvg y).
-Assert H2 := (B1_cvg x).
-Assert H3 := (B1_cvg y).
-Assert H4 := (CV_mult ? ? ? ? H0 H1).
-Assert H5 := (CV_mult ? ? ? ? H2 H3).
-Assert H6 := (reste_cv_R0 x y).
-Unfold Un_cv in H4; Unfold Un_cv in H5; Unfold Un_cv in H6.
-Unfold R_dist in H4; Unfold R_dist in H5; Unfold R_dist in H6.
-Cut ``0<eps/3``; [Intro | Unfold Rdiv; Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup0]].
-Elim (H4 ``eps/3`` H7); Intros N1 H8.
-Elim (H5 ``eps/3`` H7); Intros N2 H9.
-Elim (H6 ``eps/3`` H7); Intros N3 H10.
-Pose N := (S (S (max (max N1 N2) N3))).
-Exists N.
-Intros.
-Cut n = (S (pred n)).
-Intro; Rewrite H12.
-Rewrite <- cos_plus_form.
-Rewrite <- H12.
-Apply Rle_lt_trans with ``(Rabsolu ((A1 x n)*(A1 y n)-(cos x)*(cos y)))+(Rabsolu ((sin x)*(sin y)-(B1 x (pred n))*(B1 y (pred n))+(Reste x y (pred n))))``.
-Replace ``(A1 x n)*(A1 y n)-(B1 x (pred n))*(B1 y (pred n))+
- (Reste x y (pred n))-((cos x)*(cos y)-(sin x)*(sin y))`` with ``((A1 x n)*(A1 y n)-(cos x)*(cos y))+((sin x)*(sin y)-(B1 x (pred n))*(B1 y (pred n))+(Reste x y (pred n)))``; [Apply Rabsolu_triang | Ring].
-Replace ``eps`` with ``eps/3+(eps/3+eps/3)``.
-Apply Rplus_lt.
-Apply H8.
-Unfold ge; Apply le_trans with N.
-Unfold N.
-Apply le_trans with (max N1 N2).
-Apply le_max_l.
-Apply le_trans with (max (max N1 N2) N3).
-Apply le_max_l.
-Apply le_trans with (S (max (max N1 N2) N3)); Apply le_n_Sn.
-Assumption.
-Apply Rle_lt_trans with ``(Rabsolu ((sin x)*(sin y)-(B1 x (pred n))*(B1 y (pred n))))+(Rabsolu (Reste x y (pred n)))``.
-Apply Rabsolu_triang.
-Apply Rplus_lt.
-Rewrite <- Rabsolu_Ropp.
-Rewrite Ropp_distr2.
-Apply H9.
-Unfold ge; Apply le_trans with (max N1 N2).
-Apply le_max_r.
-Apply le_S_n.
-Rewrite <- H12.
-Apply le_trans with N.
-Unfold N.
-Apply le_n_S.
-Apply le_trans with (max (max N1 N2) N3).
-Apply le_max_l.
-Apply le_n_Sn.
-Assumption.
-Replace (Reste x y (pred n)) with ``(Reste x y (pred n))-0``.
-Apply H10.
-Unfold ge.
-Apply le_S_n.
-Rewrite <- H12.
-Apply le_trans with N.
-Unfold N.
-Apply le_n_S.
-Apply le_trans with (max (max N1 N2) N3).
-Apply le_max_r.
-Apply le_n_Sn.
-Assumption.
-Ring.
-Pattern 4 eps; Replace eps with ``3*eps/3``.
-Ring.
-Unfold Rdiv.
-Rewrite <- Rmult_assoc.
-Apply Rinv_r_simpl_m.
-DiscrR.
-Apply lt_le_trans with (pred N).
-Unfold N; Simpl; Apply lt_O_Sn.
-Apply le_S_n.
-Rewrite <- H12.
-Replace (S (pred N)) with N.
-Assumption.
-Unfold N; Simpl; Reflexivity.
-Cut (lt O N).
-Intro.
-Cut (lt O n).
-Intro.
-Apply S_pred with O; Assumption.
-Apply lt_le_trans with N; Assumption.
-Unfold N; Apply lt_O_Sn.
-Qed.