summaryrefslogtreecommitdiff
path: root/theories7/IntMap/Mapcanon.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/IntMap/Mapcanon.v')
-rw-r--r--theories7/IntMap/Mapcanon.v376
1 files changed, 0 insertions, 376 deletions
diff --git a/theories7/IntMap/Mapcanon.v b/theories7/IntMap/Mapcanon.v
deleted file mode 100644
index 7beb1fd4..00000000
--- a/theories7/IntMap/Mapcanon.v
+++ /dev/null
@@ -1,376 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Mapcanon.v,v 1.1.2.1 2004/07/16 19:31:28 herbelin Exp $ i*)
-
-Require Bool.
-Require Sumbool.
-Require Arith.
-Require ZArith.
-Require Addr.
-Require Adist.
-Require Addec.
-Require Map.
-Require Mapaxioms.
-Require Mapiter.
-Require Fset.
-Require PolyList.
-Require Lsort.
-Require Mapsubset.
-Require Mapcard.
-
-Section MapCanon.
-
- Variable A : Set.
-
- Inductive mapcanon : (Map A) -> Prop :=
- M0_canon : (mapcanon (M0 A))
- | M1_canon : (a:ad) (y:A) (mapcanon (M1 A a y))
- | M2_canon : (m1,m2:(Map A)) (mapcanon m1) -> (mapcanon m2) ->
- (le (2) (MapCard A (M2 A m1 m2))) -> (mapcanon (M2 A m1 m2)).
-
- Lemma mapcanon_M2 :
- (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (le (2) (MapCard A (M2 A m1 m2))).
- Proof.
- Intros. Inversion H. Assumption.
- Qed.
-
- Lemma mapcanon_M2_1 : (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (mapcanon m1).
- Proof.
- Intros. Inversion H. Assumption.
- Qed.
-
- Lemma mapcanon_M2_2 : (m1,m2:(Map A)) (mapcanon (M2 A m1 m2)) -> (mapcanon m2).
- Proof.
- Intros. Inversion H. Assumption.
- Qed.
-
- Lemma M2_eqmap_1 : (m0,m1,m2,m3:(Map A))
- (eqmap A (M2 A m0 m1) (M2 A m2 m3)) -> (eqmap A m0 m2).
- Proof.
- Unfold eqmap eqm. Intros. Rewrite <- (ad_double_div_2 a).
- Rewrite <- (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m0 m1).
- Rewrite <- (MapGet_M2_bit_0_0 A ? (ad_double_bit_0 a) m2 m3).
- Exact (H (ad_double a)).
- Qed.
-
- Lemma M2_eqmap_2 : (m0,m1,m2,m3:(Map A))
- (eqmap A (M2 A m0 m1) (M2 A m2 m3)) -> (eqmap A m1 m3).
- Proof.
- Unfold eqmap eqm. Intros. Rewrite <- (ad_double_plus_un_div_2 a).
- Rewrite <- (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m0 m1).
- Rewrite <- (MapGet_M2_bit_0_1 A ? (ad_double_plus_un_bit_0 a) m2 m3).
- Exact (H (ad_double_plus_un a)).
- Qed.
-
- Lemma mapcanon_unique : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') ->
- (eqmap A m m') -> m=m'.
- Proof.
- Induction m. Induction m'. Trivial.
- Intros a y H H0 H1. Cut (NONE A)=(MapGet A (M1 A a y) a). Simpl. Rewrite (ad_eq_correct a).
- Intro. Discriminate H2.
- Exact (H1 a).
- Intros. Cut (le (2) (MapCard A (M0 A))). Intro. Elim (le_Sn_O ? H4).
- Rewrite (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H2).
- Intros a y. Induction m'. Intros. Cut (MapGet A (M1 A a y) a)=(NONE A). Simpl.
- Rewrite (ad_eq_correct a). Intro. Discriminate H2.
- Exact (H1 a).
- Intros a0 y0 H H0 H1. Cut (MapGet A (M1 A a y) a)=(MapGet A (M1 A a0 y0) a). Simpl.
- Rewrite (ad_eq_correct a). Intro. Elim (sumbool_of_bool (ad_eq a0 a)). Intro H3.
- Rewrite H3 in H2. Inversion H2. Rewrite (ad_eq_complete ? ? H3). Reflexivity.
- Intro H3. Rewrite H3 in H2. Discriminate H2.
- Exact (H1 a).
- Intros. Cut (le (2) (MapCard A (M1 A a y))). Intro. Elim (le_Sn_O ? (le_S_n ? ? H4)).
- Rewrite (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H2).
- Induction m'. Intros. Cut (le (2) (MapCard A (M0 A))). Intro. Elim (le_Sn_O ? H4).
- Rewrite <- (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H1).
- Intros a y H1 H2 H3. Cut (le (2) (MapCard A (M1 A a y))). Intro.
- Elim (le_Sn_O ? (le_S_n ? ? H4)).
- Rewrite <- (MapCard_ext A ? ? H3). Exact (mapcanon_M2 ? ? H1).
- Intros. Rewrite (H m2). Rewrite (H0 m3). Reflexivity.
- Exact (mapcanon_M2_2 ? ? H3).
- Exact (mapcanon_M2_2 ? ? H4).
- Exact (M2_eqmap_2 ? ? ? ? H5).
- Exact (mapcanon_M2_1 ? ? H3).
- Exact (mapcanon_M2_1 ? ? H4).
- Exact (M2_eqmap_1 ? ? ? ? H5).
- Qed.
-
- Lemma MapPut1_canon :
- (p:positive) (a,a':ad) (y,y':A) (mapcanon (MapPut1 A a y a' y' p)).
- Proof.
- Induction p. Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M1_canon.
- Apply M1_canon.
- Apply le_n.
- Apply M2_canon. Apply M1_canon.
- Apply M1_canon.
- Apply le_n.
- Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M0_canon.
- Apply H.
- Simpl. Rewrite MapCard_Put1_equals_2. Apply le_n.
- Apply M2_canon. Apply H.
- Apply M0_canon.
- Simpl. Rewrite MapCard_Put1_equals_2. Apply le_n.
- Simpl. Simpl. Intros. Case (ad_bit_0 a). Apply M2_canon. Apply M1_canon.
- Apply M1_canon.
- Simpl. Apply le_n.
- Apply M2_canon. Apply M1_canon.
- Apply M1_canon.
- Simpl. Apply le_n.
- Qed.
-
- Lemma MapPut_canon :
- (m:(Map A)) (mapcanon m) -> (a:ad) (y:A) (mapcanon (MapPut A m a y)).
- Proof.
- Induction m. Intros. Simpl. Apply M1_canon.
- Intros a0 y0 H a y. Simpl. Case (ad_xor a0 a). Apply M1_canon.
- Intro. Apply MapPut1_canon.
- Intros. Simpl. Elim a. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 ? ? H1).
- Apply le_plus_plus. Exact (MapCard_Put_lb A m0 ad_z y).
- Apply le_n.
- Intro. Case p. Intro. Apply M2_canon. Exact (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_l. Exact (MapCard_Put_lb A m1 (ad_x p0) y).
- Intro. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_r. Exact (MapCard_Put_lb A m0 (ad_x p0) y).
- Apply M2_canon. Apply (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Apply (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_l. Exact (MapCard_Put_lb A m1 ad_z y).
- Qed.
-
- Lemma MapPut_behind_canon : (m:(Map A)) (mapcanon m) ->
- (a:ad) (y:A) (mapcanon (MapPut_behind A m a y)).
- Proof.
- Induction m. Intros. Simpl. Apply M1_canon.
- Intros a0 y0 H a y. Simpl. Case (ad_xor a0 a). Apply M1_canon.
- Intro. Apply MapPut1_canon.
- Intros. Simpl. Elim a. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)). Exact (mapcanon_M2 ? ? H1).
- Apply le_plus_plus. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m0 ad_z y).
- Apply le_n.
- Intro. Case p. Intro. Apply M2_canon. Exact (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_l. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m1 (ad_x p0) y).
- Intro. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Exact (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_r. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m0 (ad_x p0) y).
- Apply M2_canon. Apply (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Apply (mapcanon_M2_2 m0 m1 H1).
- Simpl. Apply le_trans with m:=(plus (MapCard A m0) (MapCard A m1)).
- Exact (mapcanon_M2 m0 m1 H1).
- Apply le_reg_l. Rewrite MapCard_Put_behind_Put. Exact (MapCard_Put_lb A m1 ad_z y).
- Qed.
-
- Lemma makeM2_canon :
- (m,m':(Map A)) (mapcanon m) -> (mapcanon m') -> (mapcanon (makeM2 A m m')).
- Proof.
- Intro. Case m. Intro. Case m'. Intros. Exact M0_canon.
- Intros a y H H0. Exact (M1_canon (ad_double_plus_un a) y).
- Intros. Simpl. (Apply M2_canon; Try Assumption). Exact (mapcanon_M2 m0 m1 H0).
- Intros a y m'. Case m'. Intros. Exact (M1_canon (ad_double a) y).
- Intros a0 y0 H H0. Simpl. (Apply M2_canon; Try Assumption). Apply le_n.
- Intros. Simpl. (Apply M2_canon; Try Assumption).
- Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H0).
- Exact (le_plus_r (MapCard A (M1 A a y)) (MapCard A (M2 A m0 m1))).
- Simpl. Intros. (Apply M2_canon; Try Assumption).
- Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H).
- Exact (le_plus_l (MapCard A (M2 A m0 m1)) (MapCard A m')).
- Qed.
-
- Fixpoint MapCanonicalize [m:(Map A)] : (Map A) :=
- Cases m of
- (M2 m0 m1) => (makeM2 A (MapCanonicalize m0) (MapCanonicalize m1))
- | _ => m
- end.
-
- Lemma mapcanon_exists_1 : (m:(Map A)) (eqmap A m (MapCanonicalize m)).
- Proof.
- Induction m. Apply eqmap_refl.
- Intros. Apply eqmap_refl.
- Intros. Simpl. Unfold eqmap eqm. Intro.
- Rewrite (makeM2_M2 A (MapCanonicalize m0) (MapCanonicalize m1) a).
- Rewrite MapGet_M2_bit_0_if. Rewrite MapGet_M2_bit_0_if.
- Rewrite <- (H (ad_div_2 a)). Rewrite <- (H0 (ad_div_2 a)). Reflexivity.
- Qed.
-
- Lemma mapcanon_exists_2 : (m:(Map A)) (mapcanon (MapCanonicalize m)).
- Proof.
- Induction m. Apply M0_canon.
- Intros. Simpl. Apply M1_canon.
- Intros. Simpl. (Apply makeM2_canon; Assumption).
- Qed.
-
- Lemma mapcanon_exists :
- (m:(Map A)) {m':(Map A) | (eqmap A m m') /\ (mapcanon m')}.
- Proof.
- Intro. Split with (MapCanonicalize m). Split. Apply mapcanon_exists_1.
- Apply mapcanon_exists_2.
- Qed.
-
- Lemma MapRemove_canon :
- (m:(Map A)) (mapcanon m) -> (a:ad) (mapcanon (MapRemove A m a)).
- Proof.
- Induction m. Intros. Exact M0_canon.
- Intros a y H a0. Simpl. Case (ad_eq a a0). Exact M0_canon.
- Assumption.
- Intros. Simpl. Case (ad_bit_0 a). Apply makeM2_canon. Exact (mapcanon_M2_1 ? ? H1).
- Apply H0. Exact (mapcanon_M2_2 ? ? H1).
- Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H1).
- Exact (mapcanon_M2_2 ? ? H1).
- Qed.
-
- Lemma MapMerge_canon : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') ->
- (mapcanon (MapMerge A m m')).
- Proof.
- Induction m. Intros. Exact H0.
- Simpl. Intros a y m' H H0. Exact (MapPut_behind_canon m' H0 a y).
- Induction m'. Intros. Exact H1.
- Intros a y H1 H2. Unfold MapMerge. Exact (MapPut_canon ? H1 a y).
- Intros. Simpl. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H3).
- Exact (mapcanon_M2_1 ? ? H4).
- Apply H0. Exact (mapcanon_M2_2 ? ? H3).
- Exact (mapcanon_M2_2 ? ? H4).
- Change (le (2) (MapCard A (MapMerge A (M2 A m0 m1) (M2 A m2 m3)))).
- Apply le_trans with m:=(MapCard A (M2 A m0 m1)). Exact (mapcanon_M2 ? ? H3).
- Exact (MapMerge_Card_lb_l A (M2 A m0 m1) (M2 A m2 m3)).
- Qed.
-
- Lemma MapDelta_canon : (m,m':(Map A)) (mapcanon m) -> (mapcanon m') ->
- (mapcanon (MapDelta A m m')).
- Proof.
- Induction m. Intros. Exact H0.
- Simpl. Intros a y m' H H0. Case (MapGet A m' a). Exact (MapPut_canon m' H0 a y).
- Intro. Exact (MapRemove_canon m' H0 a).
- Induction m'. Intros. Exact H1.
- Unfold MapDelta. Intros a y H1 H2. Case (MapGet A (M2 A m0 m1) a).
- Exact (MapPut_canon ? H1 a y).
- Intro. Exact (MapRemove_canon ? H1 a).
- Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H3).
- Exact (mapcanon_M2_1 ? ? H4).
- Apply H0. Exact (mapcanon_M2_2 ? ? H3).
- Exact (mapcanon_M2_2 ? ? H4).
- Qed.
-
- Variable B : Set.
-
- Lemma MapDomRestrTo_canon : (m:(Map A)) (mapcanon m) ->
- (m':(Map B)) (mapcanon (MapDomRestrTo A B m m')).
- Proof.
- Induction m. Intros. Exact M0_canon.
- Simpl. Intros a y H m'. Case (MapGet B m' a). Exact M0_canon.
- Intro. Apply M1_canon.
- Induction m'. Exact M0_canon.
- Unfold MapDomRestrTo. Intros a y. Case (MapGet A (M2 A m0 m1) a). Exact M0_canon.
- Intro. Apply M1_canon.
- Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 m0 m1 H1).
- Apply H0. Exact (mapcanon_M2_2 m0 m1 H1).
- Qed.
-
- Lemma MapDomRestrBy_canon : (m:(Map A)) (mapcanon m) ->
- (m':(Map B)) (mapcanon (MapDomRestrBy A B m m')).
- Proof.
- Induction m. Intros. Exact M0_canon.
- Simpl. Intros a y H m'. Case (MapGet B m' a). Assumption.
- Intro. Exact M0_canon.
- Induction m'. Exact H1.
- Intros a y. Simpl. Case (ad_bit_0 a). Apply makeM2_canon. Exact (mapcanon_M2_1 ? ? H1).
- Apply MapRemove_canon. Exact (mapcanon_M2_2 ? ? H1).
- Apply makeM2_canon. Apply MapRemove_canon. Exact (mapcanon_M2_1 ? ? H1).
- Exact (mapcanon_M2_2 ? ? H1).
- Intros. Simpl. Apply makeM2_canon. Apply H. Exact (mapcanon_M2_1 ? ? H1).
- Apply H0. Exact (mapcanon_M2_2 ? ? H1).
- Qed.
-
- Lemma Map_of_alist_canon : (l:(alist A)) (mapcanon (Map_of_alist A l)).
- Proof.
- Induction l. Exact M0_canon.
- Intro r. Elim r. Intros a y l0 H. Simpl. Apply MapPut_canon. Assumption.
- Qed.
-
- Lemma MapSubset_c_1 : (m:(Map A)) (m':(Map B)) (mapcanon m) ->
- (MapSubset A B m m') -> (MapDomRestrBy A B m m')=(M0 A).
- Proof.
- Intros. Apply mapcanon_unique. Apply MapDomRestrBy_canon. Assumption.
- Apply M0_canon.
- Exact (MapSubset_imp_2 ? ? m m' H0).
- Qed.
-
- Lemma MapSubset_c_2 : (m:(Map A)) (m':(Map B))
- (MapDomRestrBy A B m m')=(M0 A) -> (MapSubset A B m m').
- Proof.
- Intros. Apply MapSubset_2_imp. Unfold MapSubset_2. Rewrite H. Apply eqmap_refl.
- Qed.
-
-End MapCanon.
-
-Section FSetCanon.
-
- Variable A : Set.
-
- Lemma MapDom_canon : (m:(Map A)) (mapcanon A m) -> (mapcanon unit (MapDom A m)).
- Proof.
- Induction m. Intro. Exact (M0_canon unit).
- Intros a y H. Exact (M1_canon unit a ?).
- Intros. Simpl. Apply M2_canon. Apply H. Exact (mapcanon_M2_1 A ? ? H1).
- Apply H0. Exact (mapcanon_M2_2 A ? ? H1).
- Change (le (2) (MapCard unit (MapDom A (M2 A m0 m1)))). Rewrite <- MapCard_Dom.
- Exact (mapcanon_M2 A ? ? H1).
- Qed.
-
-End FSetCanon.
-
-Section MapFoldCanon.
-
- Variable A, B : Set.
-
- Lemma MapFold_canon_1 : (m0:(Map B)) (mapcanon B m0) ->
- (op : (Map B) -> (Map B) -> (Map B))
- ((m1:(Map B)) (mapcanon B m1) -> (m2:(Map B)) (mapcanon B m2) ->
- (mapcanon B (op m1 m2))) ->
- (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) ->
- (m:(Map A)) (pf : ad->ad) (mapcanon B (MapFold1 A (Map B) m0 op f pf m)).
- Proof.
- Induction m. Intro. Exact H.
- Intros a y pf. Simpl. Apply H1.
- Intros. Simpl. Apply H0. Apply H2.
- Apply H3.
- Qed.
-
- Lemma MapFold_canon : (m0:(Map B)) (mapcanon B m0) ->
- (op : (Map B) -> (Map B) -> (Map B))
- ((m1:(Map B)) (mapcanon B m1) -> (m2:(Map B)) (mapcanon B m2) ->
- (mapcanon B (op m1 m2))) ->
- (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) ->
- (m:(Map A)) (mapcanon B (MapFold A (Map B) m0 op f m)).
- Proof.
- Intros. Exact (MapFold_canon_1 m0 H op H0 f H1 m [a:ad]a).
- Qed.
-
- Lemma MapCollect_canon :
- (f : ad->A->(Map B)) ((a:ad) (y:A) (mapcanon B (f a y))) ->
- (m:(Map A)) (mapcanon B (MapCollect A B f m)).
- Proof.
- Intros. Rewrite MapCollect_as_Fold. Apply MapFold_canon. Apply M0_canon.
- Intros. Exact (MapMerge_canon B m1 m2 H0 H1).
- Assumption.
- Qed.
-
-End MapFoldCanon.