summaryrefslogtreecommitdiff
path: root/theories7/IntMap/Addr.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/IntMap/Addr.v')
-rw-r--r--theories7/IntMap/Addr.v456
1 files changed, 0 insertions, 456 deletions
diff --git a/theories7/IntMap/Addr.v b/theories7/IntMap/Addr.v
deleted file mode 100644
index 9f362772..00000000
--- a/theories7/IntMap/Addr.v
+++ /dev/null
@@ -1,456 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-(*i $Id: Addr.v,v 1.1.2.1 2004/07/16 19:31:27 herbelin Exp $ i*)
-
-(** Representation of adresses by the [positive] type of binary numbers *)
-
-Require Bool.
-Require ZArith.
-
-Inductive ad : Set :=
- ad_z : ad
- | ad_x : positive -> ad.
-
-Lemma ad_sum : (a:ad) {p:positive | a=(ad_x p)}+{a=ad_z}.
-Proof.
- NewDestruct a; Auto.
- Left; Exists p; Trivial.
-Qed.
-
-Fixpoint p_xor [p:positive] : positive -> ad :=
- [p2] Cases p of
- xH => Cases p2 of
- xH => ad_z
- | (xO p'2) => (ad_x (xI p'2))
- | (xI p'2) => (ad_x (xO p'2))
- end
- | (xO p') => Cases p2 of
- xH => (ad_x (xI p'))
- | (xO p'2) => Cases (p_xor p' p'2) of
- ad_z => ad_z
- | (ad_x p'') => (ad_x (xO p''))
- end
- | (xI p'2) => Cases (p_xor p' p'2) of
- ad_z => (ad_x xH)
- | (ad_x p'') => (ad_x (xI p''))
- end
- end
- | (xI p') => Cases p2 of
- xH => (ad_x (xO p'))
- | (xO p'2) => Cases (p_xor p' p'2) of
- ad_z => (ad_x xH)
- | (ad_x p'') => (ad_x (xI p''))
- end
- | (xI p'2) => Cases (p_xor p' p'2) of
- ad_z => ad_z
- | (ad_x p'') => (ad_x (xO p''))
- end
- end
- end.
-
-Definition ad_xor := [a,a':ad]
- Cases a of
- ad_z => a'
- | (ad_x p) => Cases a' of
- ad_z => a
- | (ad_x p') => (p_xor p p')
- end
- end.
-
-Lemma ad_xor_neutral_left : (a:ad) (ad_xor ad_z a)=a.
-Proof.
- Trivial.
-Qed.
-
-Lemma ad_xor_neutral_right : (a:ad) (ad_xor a ad_z)=a.
-Proof.
- NewDestruct a; Trivial.
-Qed.
-
-Lemma ad_xor_comm : (a,a':ad) (ad_xor a a')=(ad_xor a' a).
-Proof.
- NewDestruct a; NewDestruct a'; Simpl; Auto.
- Generalize p0; Clear p0; NewInduction p as [p Hrecp|p Hrecp|]; Simpl; Auto.
- NewDestruct p0; Simpl; Trivial; Intros.
- Rewrite Hrecp; Trivial.
- Rewrite Hrecp; Trivial.
- NewDestruct p0; Simpl; Trivial; Intros.
- Rewrite Hrecp; Trivial.
- Rewrite Hrecp; Trivial.
- NewDestruct p0; Simpl; Auto.
-Qed.
-
-Lemma ad_xor_nilpotent : (a:ad) (ad_xor a a)=ad_z.
-Proof.
- NewDestruct a; Trivial.
- Simpl. NewInduction p as [p IHp|p IHp|]; Trivial.
- Simpl. Rewrite IHp; Reflexivity.
- Simpl. Rewrite IHp; Reflexivity.
-Qed.
-
-Fixpoint ad_bit_1 [p:positive] : nat -> bool :=
- Cases p of
- xH => [n:nat] Cases n of
- O => true
- | (S _) => false
- end
- | (xO p) => [n:nat] Cases n of
- O => false
- | (S n') => (ad_bit_1 p n')
- end
- | (xI p) => [n:nat] Cases n of
- O => true
- | (S n') => (ad_bit_1 p n')
- end
- end.
-
-Definition ad_bit := [a:ad]
- Cases a of
- ad_z => [_:nat] false
- | (ad_x p) => (ad_bit_1 p)
- end.
-
-Definition eqf := [f,g:nat->bool] (n:nat) (f n)=(g n).
-
-Lemma ad_faithful_1 : (a:ad) (eqf (ad_bit ad_z) (ad_bit a)) -> ad_z=a.
-Proof.
- NewDestruct a. Trivial.
- NewInduction p as [p IHp|p IHp|];Intro H. Absurd ad_z=(ad_x p). Discriminate.
- Exact (IHp [n:nat](H (S n))).
- Absurd ad_z=(ad_x p). Discriminate.
- Exact (IHp [n:nat](H (S n))).
- Absurd false=true. Discriminate.
- Exact (H O).
-Qed.
-
-Lemma ad_faithful_2 : (a:ad) (eqf (ad_bit (ad_x xH)) (ad_bit a)) -> (ad_x xH)=a.
-Proof.
- NewDestruct a. Intros. Absurd true=false. Discriminate.
- Exact (H O).
- NewDestruct p. Intro H. Absurd ad_z=(ad_x p). Discriminate.
- Exact (ad_faithful_1 (ad_x p) [n:nat](H (S n))).
- Intros. Absurd true=false. Discriminate.
- Exact (H O).
- Trivial.
-Qed.
-
-Lemma ad_faithful_3 :
- (a:ad) (p:positive)
- ((p':positive) (eqf (ad_bit (ad_x p)) (ad_bit (ad_x p'))) -> p=p') ->
- (eqf (ad_bit (ad_x (xO p))) (ad_bit a)) ->
- (ad_x (xO p))=a.
-Proof.
- NewDestruct a. Intros. Cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xO p)))).
- Intro. Rewrite (ad_faithful_1 (ad_x (xO p)) H1). Reflexivity.
- Unfold eqf. Intro. Unfold eqf in H0. Rewrite H0. Reflexivity.
- Case p. Intros. Absurd false=true. Discriminate.
- Exact (H0 O).
- Intros. Rewrite (H p0 [n:nat](H0 (S n))). Reflexivity.
- Intros. Absurd false=true. Discriminate.
- Exact (H0 O).
-Qed.
-
-Lemma ad_faithful_4 :
- (a:ad) (p:positive)
- ((p':positive) (eqf (ad_bit (ad_x p)) (ad_bit (ad_x p'))) -> p=p') ->
- (eqf (ad_bit (ad_x (xI p))) (ad_bit a)) ->
- (ad_x (xI p))=a.
-Proof.
- NewDestruct a. Intros. Cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xI p)))).
- Intro. Rewrite (ad_faithful_1 (ad_x (xI p)) H1). Reflexivity.
- Unfold eqf. Intro. Unfold eqf in H0. Rewrite H0. Reflexivity.
- Case p. Intros. Rewrite (H p0 [n:nat](H0 (S n))). Reflexivity.
- Intros. Absurd true=false. Discriminate.
- Exact (H0 O).
- Intros. Absurd ad_z=(ad_x p0). Discriminate.
- Cut (eqf (ad_bit (ad_x xH)) (ad_bit (ad_x (xI p0)))).
- Intro. Exact (ad_faithful_1 (ad_x p0) [n:nat](H1 (S n))).
- Unfold eqf. Unfold eqf in H0. Intro. Rewrite H0. Reflexivity.
-Qed.
-
-Lemma ad_faithful : (a,a':ad) (eqf (ad_bit a) (ad_bit a')) -> a=a'.
-Proof.
- NewDestruct a. Exact ad_faithful_1.
- NewInduction p. Intros a' H. Apply ad_faithful_4. Intros. Cut (ad_x p)=(ad_x p').
- Intro. Inversion H1. Reflexivity.
- Exact (IHp (ad_x p') H0).
- Assumption.
- Intros. Apply ad_faithful_3. Intros. Cut (ad_x p)=(ad_x p'). Intro. Inversion H1. Reflexivity.
- Exact (IHp (ad_x p') H0).
- Assumption.
- Exact ad_faithful_2.
-Qed.
-
-Definition adf_xor := [f,g:nat->bool; n:nat] (xorb (f n) (g n)).
-
-Lemma ad_xor_sem_1 : (a':ad) (ad_bit (ad_xor ad_z a') O)=(ad_bit a' O).
-Proof.
- Trivial.
-Qed.
-
-Lemma ad_xor_sem_2 : (a':ad) (ad_bit (ad_xor (ad_x xH) a') O)=(negb (ad_bit a' O)).
-Proof.
- Intro. Case a'. Trivial.
- Simpl. Intro.
- Case p; Trivial.
-Qed.
-
-Lemma ad_xor_sem_3 :
- (p:positive) (a':ad) (ad_bit (ad_xor (ad_x (xO p)) a') O)=(ad_bit a' O).
-Proof.
- Intros. Case a'. Trivial.
- Simpl. Intro.
- Case p0; Trivial. Intro.
- Case (p_xor p p1); Trivial.
- Intro. Case (p_xor p p1); Trivial.
-Qed.
-
-Lemma ad_xor_sem_4 : (p:positive) (a':ad)
- (ad_bit (ad_xor (ad_x (xI p)) a') O)=(negb (ad_bit a' O)).
-Proof.
- Intros. Case a'. Trivial.
- Simpl. Intro. Case p0; Trivial. Intro.
- Case (p_xor p p1); Trivial.
- Intro.
- Case (p_xor p p1); Trivial.
-Qed.
-
-Lemma ad_xor_sem_5 :
- (a,a':ad) (ad_bit (ad_xor a a') O)=(adf_xor (ad_bit a) (ad_bit a') O).
-Proof.
- NewDestruct a. Intro. Change (ad_bit a' O)=(xorb false (ad_bit a' O)). Rewrite false_xorb. Trivial.
- Case p. Exact ad_xor_sem_4.
- Intros. Change (ad_bit (ad_xor (ad_x (xO p0)) a') O)=(xorb false (ad_bit a' O)).
- Rewrite false_xorb. Apply ad_xor_sem_3. Exact ad_xor_sem_2.
-Qed.
-
-Lemma ad_xor_sem_6 : (n:nat)
- ((a,a':ad) (ad_bit (ad_xor a a') n)=(adf_xor (ad_bit a) (ad_bit a') n)) ->
- (a,a':ad) (ad_bit (ad_xor a a') (S n))=(adf_xor (ad_bit a) (ad_bit a') (S n)).
-Proof.
- Intros. Case a. Unfold adf_xor. Unfold 2 ad_bit. Rewrite false_xorb. Reflexivity.
- Case a'. Unfold adf_xor. Unfold 3 ad_bit. Intro. Rewrite xorb_false. Reflexivity.
- Intros. Case p0. Case p. Intros.
- Change (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xI p1))) (S n))
- =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n).
- Rewrite <- H. Simpl.
- Case (p_xor p2 p1); Trivial.
- Intros.
- Change (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xO p1))) (S n))
- =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n).
- Rewrite <- H. Simpl.
- Case (p_xor p2 p1); Trivial.
- Intro. Unfold adf_xor. Unfold 3 ad_bit. Unfold ad_bit_1. Rewrite xorb_false. Reflexivity.
- Case p. Intros.
- Change (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xI p1))) (S n))
- =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n).
- Rewrite <- H. Simpl.
- Case (p_xor p2 p1); Trivial.
- Intros.
- Change (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xO p1))) (S n))
- =(adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n).
- Rewrite <- H. Simpl.
- Case (p_xor p2 p1); Trivial.
- Intro. Unfold adf_xor. Unfold 3 ad_bit. Unfold ad_bit_1. Rewrite xorb_false. Reflexivity.
- Unfold adf_xor. Unfold 2 ad_bit. Unfold ad_bit_1. Rewrite false_xorb. Simpl. Case p; Trivial.
-Qed.
-
-Lemma ad_xor_semantics :
- (a,a':ad) (eqf (ad_bit (ad_xor a a')) (adf_xor (ad_bit a) (ad_bit a'))).
-Proof.
- Unfold eqf. Intros. Generalize a a'. Elim n. Exact ad_xor_sem_5.
- Exact ad_xor_sem_6.
-Qed.
-
-Lemma eqf_sym : (f,f':nat->bool) (eqf f f') -> (eqf f' f).
-Proof.
- Unfold eqf. Intros. Rewrite H. Reflexivity.
-Qed.
-
-Lemma eqf_refl : (f:nat->bool) (eqf f f).
-Proof.
- Unfold eqf. Trivial.
-Qed.
-
-Lemma eqf_trans : (f,f',f'':nat->bool) (eqf f f') -> (eqf f' f'') -> (eqf f f'').
-Proof.
- Unfold eqf. Intros. Rewrite H. Exact (H0 n).
-Qed.
-
-Lemma adf_xor_eq : (f,f':nat->bool) (eqf (adf_xor f f') [n:nat] false) -> (eqf f f').
-Proof.
- Unfold eqf. Unfold adf_xor. Intros. Apply xorb_eq. Apply H.
-Qed.
-
-Lemma ad_xor_eq : (a,a':ad) (ad_xor a a')=ad_z -> a=a'.
-Proof.
- Intros. Apply ad_faithful. Apply adf_xor_eq. Apply eqf_trans with f':=(ad_bit (ad_xor a a')).
- Apply eqf_sym. Apply ad_xor_semantics.
- Rewrite H. Unfold eqf. Trivial.
-Qed.
-
-Lemma adf_xor_assoc : (f,f',f'':nat->bool)
- (eqf (adf_xor (adf_xor f f') f'') (adf_xor f (adf_xor f' f''))).
-Proof.
- Unfold eqf. Unfold adf_xor. Intros. Apply xorb_assoc.
-Qed.
-
-Lemma eqf_xor_1 : (f,f',f'',f''':nat->bool) (eqf f f') -> (eqf f'' f''') ->
- (eqf (adf_xor f f'') (adf_xor f' f''')).
-Proof.
- Unfold eqf. Intros. Unfold adf_xor. Rewrite H. Rewrite H0. Reflexivity.
-Qed.
-
-Lemma ad_xor_assoc :
- (a,a',a'':ad) (ad_xor (ad_xor a a') a'')=(ad_xor a (ad_xor a' a'')).
-Proof.
- Intros. Apply ad_faithful.
- Apply eqf_trans with f':=(adf_xor (adf_xor (ad_bit a) (ad_bit a')) (ad_bit a'')).
- Apply eqf_trans with f':=(adf_xor (ad_bit (ad_xor a a')) (ad_bit a'')).
- Apply ad_xor_semantics.
- Apply eqf_xor_1. Apply ad_xor_semantics.
- Apply eqf_refl.
- Apply eqf_trans with f':=(adf_xor (ad_bit a) (adf_xor (ad_bit a') (ad_bit a''))).
- Apply adf_xor_assoc.
- Apply eqf_trans with f':=(adf_xor (ad_bit a) (ad_bit (ad_xor a' a''))).
- Apply eqf_xor_1. Apply eqf_refl.
- Apply eqf_sym. Apply ad_xor_semantics.
- Apply eqf_sym. Apply ad_xor_semantics.
-Qed.
-
-Definition ad_double := [a:ad]
- Cases a of
- ad_z => ad_z
- | (ad_x p) => (ad_x (xO p))
- end.
-
-Definition ad_double_plus_un := [a:ad]
- Cases a of
- ad_z => (ad_x xH)
- | (ad_x p) => (ad_x (xI p))
- end.
-
-Definition ad_div_2 := [a:ad]
- Cases a of
- ad_z => ad_z
- | (ad_x xH) => ad_z
- | (ad_x (xO p)) => (ad_x p)
- | (ad_x (xI p)) => (ad_x p)
- end.
-
-Lemma ad_double_div_2 : (a:ad) (ad_div_2 (ad_double a))=a.
-Proof.
- NewDestruct a; Trivial.
-Qed.
-
-Lemma ad_double_plus_un_div_2 : (a:ad) (ad_div_2 (ad_double_plus_un a))=a.
-Proof.
- NewDestruct a; Trivial.
-Qed.
-
-Lemma ad_double_inj : (a0,a1:ad) (ad_double a0)=(ad_double a1) -> a0=a1.
-Proof.
- Intros. Rewrite <- (ad_double_div_2 a0). Rewrite H. Apply ad_double_div_2.
-Qed.
-
-Lemma ad_double_plus_un_inj :
- (a0,a1:ad) (ad_double_plus_un a0)=(ad_double_plus_un a1) -> a0=a1.
-Proof.
- Intros. Rewrite <- (ad_double_plus_un_div_2 a0). Rewrite H. Apply ad_double_plus_un_div_2.
-Qed.
-
-Definition ad_bit_0 := [a:ad]
- Cases a of
- ad_z => false
- | (ad_x (xO _)) => false
- | _ => true
- end.
-
-Lemma ad_double_bit_0 : (a:ad) (ad_bit_0 (ad_double a))=false.
-Proof.
- NewDestruct a; Trivial.
-Qed.
-
-Lemma ad_double_plus_un_bit_0 : (a:ad) (ad_bit_0 (ad_double_plus_un a))=true.
-Proof.
- NewDestruct a; Trivial.
-Qed.
-
-Lemma ad_div_2_double : (a:ad) (ad_bit_0 a)=false -> (ad_double (ad_div_2 a))=a.
-Proof.
- NewDestruct a. Trivial. NewDestruct p. Intro H. Discriminate H.
- Intros. Reflexivity.
- Intro H. Discriminate H.
-Qed.
-
-Lemma ad_div_2_double_plus_un :
- (a:ad) (ad_bit_0 a)=true -> (ad_double_plus_un (ad_div_2 a))=a.
-Proof.
- NewDestruct a. Intro. Discriminate H.
- NewDestruct p. Intros. Reflexivity.
- Intro H. Discriminate H.
- Intro. Reflexivity.
-Qed.
-
-Lemma ad_bit_0_correct : (a:ad) (ad_bit a O)=(ad_bit_0 a).
-Proof.
- NewDestruct a; Trivial.
- NewDestruct p; Trivial.
-Qed.
-
-Lemma ad_div_2_correct : (a:ad) (n:nat) (ad_bit (ad_div_2 a) n)=(ad_bit a (S n)).
-Proof.
- NewDestruct a; Trivial.
- NewDestruct p; Trivial.
-Qed.
-
-Lemma ad_xor_bit_0 :
- (a,a':ad) (ad_bit_0 (ad_xor a a'))=(xorb (ad_bit_0 a) (ad_bit_0 a')).
-Proof.
- Intros. Rewrite <- ad_bit_0_correct. Rewrite (ad_xor_semantics a a' O).
- Unfold adf_xor. Rewrite ad_bit_0_correct. Rewrite ad_bit_0_correct. Reflexivity.
-Qed.
-
-Lemma ad_xor_div_2 :
- (a,a':ad) (ad_div_2 (ad_xor a a'))=(ad_xor (ad_div_2 a) (ad_div_2 a')).
-Proof.
- Intros. Apply ad_faithful. Unfold eqf. Intro.
- Rewrite (ad_xor_semantics (ad_div_2 a) (ad_div_2 a') n).
- Rewrite ad_div_2_correct.
- Rewrite (ad_xor_semantics a a' (S n)).
- Unfold adf_xor. Rewrite ad_div_2_correct. Rewrite ad_div_2_correct.
- Reflexivity.
-Qed.
-
-Lemma ad_neg_bit_0 : (a,a':ad) (ad_bit_0 (ad_xor a a'))=true ->
- (ad_bit_0 a)=(negb (ad_bit_0 a')).
-Proof.
- Intros. Rewrite <- true_xorb. Rewrite <- H. Rewrite ad_xor_bit_0.
- Rewrite xorb_assoc. Rewrite xorb_nilpotent. Rewrite xorb_false. Reflexivity.
-Qed.
-
-Lemma ad_neg_bit_0_1 :
- (a,a':ad) (ad_xor a a')=(ad_x xH) -> (ad_bit_0 a)=(negb (ad_bit_0 a')).
-Proof.
- Intros. Apply ad_neg_bit_0. Rewrite H. Reflexivity.
-Qed.
-
-Lemma ad_neg_bit_0_2 : (a,a':ad) (p:positive) (ad_xor a a')=(ad_x (xI p)) ->
- (ad_bit_0 a)=(negb (ad_bit_0 a')).
-Proof.
- Intros. Apply ad_neg_bit_0. Rewrite H. Reflexivity.
-Qed.
-
-Lemma ad_same_bit_0 : (a,a':ad) (p:positive) (ad_xor a a')=(ad_x (xO p)) ->
- (ad_bit_0 a)=(ad_bit_0 a').
-Proof.
- Intros. Rewrite <- (xorb_false (ad_bit_0 a)). Cut (ad_bit_0 (ad_x (xO p)))=false.
- Intro. Rewrite <- H0. Rewrite <- H. Rewrite ad_xor_bit_0. Rewrite <- xorb_assoc.
- Rewrite xorb_nilpotent. Rewrite false_xorb. Reflexivity.
- Reflexivity.
-Qed.