summaryrefslogtreecommitdiff
path: root/theories7/Arith/Mult.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Arith/Mult.v')
-rwxr-xr-xtheories7/Arith/Mult.v224
1 files changed, 0 insertions, 224 deletions
diff --git a/theories7/Arith/Mult.v b/theories7/Arith/Mult.v
deleted file mode 100755
index 9bd4aaf9..00000000
--- a/theories7/Arith/Mult.v
+++ /dev/null
@@ -1,224 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Mult.v,v 1.1.2.1 2004/07/16 19:31:25 herbelin Exp $ i*)
-
-Require Export Plus.
-Require Export Minus.
-Require Export Lt.
-Require Export Le.
-
-V7only [Import nat_scope.].
-Open Local Scope nat_scope.
-
-Implicit Variables Type m,n,p:nat.
-
-(** Zero property *)
-
-Lemma mult_0_r : (n:nat) (mult n O)=O.
-Proof.
-Intro; Symmetry; Apply mult_n_O.
-Qed.
-
-Lemma mult_0_l : (n:nat) (mult O n)=O.
-Proof.
-Reflexivity.
-Qed.
-
-(** Distributivity *)
-
-Lemma mult_plus_distr :
- (n,m,p:nat)((mult (plus n m) p)=(plus (mult n p) (mult m p))).
-Proof.
-Intros; Elim n; Simpl; Intros; Auto with arith.
-Elim plus_assoc_l; Elim H; Auto with arith.
-Qed.
-Hints Resolve mult_plus_distr : arith v62.
-
-Lemma mult_plus_distr_r : (n,m,p:nat) (mult n (plus m p))=(plus (mult n m) (mult n p)).
-Proof.
- NewInduction n. Trivial.
- Intros. Simpl. Rewrite (IHn m p). Apply sym_eq. Apply plus_permute_2_in_4.
-Qed.
-
-Lemma mult_minus_distr : (n,m,p:nat)((mult (minus n m) p)=(minus (mult n p) (mult m p))).
-Proof.
-Intros; Pattern n m; Apply nat_double_ind; Simpl; Intros; Auto with arith.
-Elim minus_plus_simpl; Auto with arith.
-Qed.
-Hints Resolve mult_minus_distr : arith v62.
-
-(** Associativity *)
-
-Lemma mult_assoc_r : (n,m,p:nat)((mult (mult n m) p) = (mult n (mult m p))).
-Proof.
-Intros; Elim n; Intros; Simpl; Auto with arith.
-Rewrite mult_plus_distr.
-Elim H; Auto with arith.
-Qed.
-Hints Resolve mult_assoc_r : arith v62.
-
-Lemma mult_assoc_l : (n,m,p:nat)(mult n (mult m p)) = (mult (mult n m) p).
-Proof.
-Auto with arith.
-Qed.
-Hints Resolve mult_assoc_l : arith v62.
-
-(** Commutativity *)
-
-Lemma mult_sym : (n,m:nat)(mult n m)=(mult m n).
-Proof.
-Intros; Elim n; Intros; Simpl; Auto with arith.
-Elim mult_n_Sm.
-Elim H; Apply plus_sym.
-Qed.
-Hints Resolve mult_sym : arith v62.
-
-(** 1 is neutral *)
-
-Lemma mult_1_n : (n:nat)(mult (S O) n)=n.
-Proof.
-Simpl; Auto with arith.
-Qed.
-Hints Resolve mult_1_n : arith v62.
-
-Lemma mult_n_1 : (n:nat)(mult n (S O))=n.
-Proof.
-Intro; Elim mult_sym; Auto with arith.
-Qed.
-Hints Resolve mult_n_1 : arith v62.
-
-(** Compatibility with orders *)
-
-Lemma mult_O_le : (n,m:nat)(m=O)\/(le n (mult m n)).
-Proof.
-NewInduction m; Simpl; Auto with arith.
-Qed.
-Hints Resolve mult_O_le : arith v62.
-
-Lemma mult_le_compat_l : (n,m,p:nat) (le n m) -> (le (mult p n) (mult p m)).
-Proof.
- NewInduction p as [|p IHp]. Intros. Simpl. Apply le_n.
- Intros. Simpl. Apply le_plus_plus. Assumption.
- Apply IHp. Assumption.
-Qed.
-Hints Resolve mult_le_compat_l : arith.
-V7only [
-Notation mult_le := [m,n,p:nat](mult_le_compat_l p n m).
-].
-
-
-Lemma le_mult_right : (m,n,p:nat)(le m n)->(le (mult m p) (mult n p)).
-Intros m n p H.
-Rewrite mult_sym. Rewrite (mult_sym n).
-Auto with arith.
-Qed.
-
-Lemma le_mult_mult :
- (m,n,p,q:nat)(le m n)->(le p q)->(le (mult m p) (mult n q)).
-Proof.
-Intros m n p q Hmn Hpq; NewInduction Hmn.
-NewInduction Hpq.
-(* m*p<=m*p *)
-Apply le_n.
-(* m*p<=m*m0 -> m*p<=m*(S m0) *)
-Rewrite <- mult_n_Sm; Apply le_trans with (mult m m0).
-Assumption.
-Apply le_plus_l.
-(* m*p<=m0*q -> m*p<=(S m0)*q *)
-Simpl; Apply le_trans with (mult m0 q).
-Assumption.
-Apply le_plus_r.
-Qed.
-
-Lemma mult_lt : (m,n,p:nat) (lt n p) -> (lt (mult (S m) n) (mult (S m) p)).
-Proof.
- Intro m; NewInduction m. Intros. Simpl. Rewrite <- plus_n_O. Rewrite <- plus_n_O. Assumption.
- Intros. Exact (lt_plus_plus ? ? ? ? H (IHm ? ? H)).
-Qed.
-
-Hints Resolve mult_lt : arith.
-V7only [
-Notation lt_mult_left := mult_lt.
-(* Theorem lt_mult_left :
- (x,y,z:nat) (lt x y) -> (lt (mult (S z) x) (mult (S z) y)).
-*)
-].
-
-Lemma lt_mult_right :
- (m,n,p:nat) (lt m n) -> (lt (0) p) -> (lt (mult m p) (mult n p)).
-Intros m n p H H0.
-NewInduction p.
-Elim (lt_n_n ? H0).
-Rewrite mult_sym.
-Replace (mult n (S p)) with (mult (S p) n); Auto with arith.
-Qed.
-
-Lemma mult_le_conv_1 : (m,n,p:nat) (le (mult (S m) n) (mult (S m) p)) -> (le n p).
-Proof.
- Intros m n p H. Elim (le_or_lt n p). Trivial.
- Intro H0. Cut (lt (mult (S m) n) (mult (S m) n)). Intro. Elim (lt_n_n ? H1).
- Apply le_lt_trans with m:=(mult (S m) p). Assumption.
- Apply mult_lt. Assumption.
-Qed.
-
-(** n|->2*n and n|->2n+1 have disjoint image *)
-
-V7only [ (* From Zdivides *) ].
-Theorem odd_even_lem:
- (p, q : ?) ~ (plus (mult (2) p) (1)) = (mult (2) q).
-Intros p; Elim p; Auto.
-Intros q; Case q; Simpl.
-Red; Intros; Discriminate.
-Intros q'; Rewrite [x, y : ?] (plus_sym x (S y)); Simpl; Red; Intros;
- Discriminate.
-Intros p' H q; Case q.
-Simpl; Red; Intros; Discriminate.
-Intros q'; Red; Intros H0; Case (H q').
-Replace (mult (S (S O)) q') with (minus (mult (S (S O)) (S q')) (2)).
-Rewrite <- H0; Simpl; Auto.
-Repeat Rewrite [x, y : ?] (plus_sym x (S y)); Simpl; Auto.
-Simpl; Repeat Rewrite [x, y : ?] (plus_sym x (S y)); Simpl; Auto.
-Case q'; Simpl; Auto.
-Qed.
-
-
-(** Tail-recursive mult *)
-
-(** [tail_mult] is an alternative definition for [mult] which is
- tail-recursive, whereas [mult] is not. This can be useful
- when extracting programs. *)
-
-Fixpoint mult_acc [s,m,n:nat] : nat :=
- Cases n of
- O => s
- | (S p) => (mult_acc (tail_plus m s) m p)
- end.
-
-Lemma mult_acc_aux : (n,s,m:nat)(plus s (mult n m))= (mult_acc s m n).
-Proof.
-NewInduction n as [|p IHp]; Simpl;Auto.
-Intros s m; Rewrite <- plus_tail_plus; Rewrite <- IHp.
-Rewrite <- plus_assoc_r; Apply (f_equal2 nat nat);Auto.
-Rewrite plus_sym;Auto.
-Qed.
-
-Definition tail_mult := [n,m:nat](mult_acc O m n).
-
-Lemma mult_tail_mult : (n,m:nat)(mult n m)=(tail_mult n m).
-Proof.
-Intros; Unfold tail_mult; Rewrite <- mult_acc_aux;Auto.
-Qed.
-
-(** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus]
- and [mult] and simplify *)
-
-Tactic Definition TailSimpl :=
- Repeat Rewrite <- plus_tail_plus;
- Repeat Rewrite <- mult_tail_mult;
- Simpl.