summaryrefslogtreecommitdiff
path: root/theories7/Arith/Even.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Arith/Even.v')
-rw-r--r--theories7/Arith/Even.v310
1 files changed, 0 insertions, 310 deletions
diff --git a/theories7/Arith/Even.v b/theories7/Arith/Even.v
deleted file mode 100644
index bcc413f5..00000000
--- a/theories7/Arith/Even.v
+++ /dev/null
@@ -1,310 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Even.v,v 1.1.2.1 2004/07/16 19:31:24 herbelin Exp $ i*)
-
-(** Here we define the predicates [even] and [odd] by mutual induction
- and we prove the decidability and the exclusion of those predicates.
- The main results about parity are proved in the module Div2. *)
-
-V7only [Import nat_scope.].
-Open Local Scope nat_scope.
-
-Implicit Variables Type m,n:nat.
-
-Inductive even : nat->Prop :=
- even_O : (even O)
- | even_S : (n:nat)(odd n)->(even (S n))
-with odd : nat->Prop :=
- odd_S : (n:nat)(even n)->(odd (S n)).
-
-Hint constr_even : arith := Constructors even.
-Hint constr_odd : arith := Constructors odd.
-
-Lemma even_or_odd : (n:nat) (even n)\/(odd n).
-Proof.
-NewInduction n.
-Auto with arith.
-Elim IHn; Auto with arith.
-Qed.
-
-Lemma even_odd_dec : (n:nat) { (even n) }+{ (odd n) }.
-Proof.
-NewInduction n.
-Auto with arith.
-Elim IHn; Auto with arith.
-Qed.
-
-Lemma not_even_and_odd : (n:nat) (even n) -> (odd n) -> False.
-Proof.
-NewInduction n.
-Intros. Inversion H0.
-Intros. Inversion H. Inversion H0. Auto with arith.
-Qed.
-
-Lemma even_plus_aux:
- (n,m:nat)
- (iff (odd (plus n m)) (odd n) /\ (even m) \/ (even n) /\ (odd m)) /\
- (iff (even (plus n m)) (even n) /\ (even m) \/ (odd n) /\ (odd m)).
-Proof.
-Intros n; Elim n; Simpl; Auto with arith.
-Intros m; Split; Auto.
-Split.
-Intros H; Right; Split; Auto with arith.
-Intros H'; Case H'; Auto with arith.
-Intros H'0; Elim H'0; Intros H'1 H'2; Inversion H'1.
-Intros H; Elim H; Auto.
-Split; Auto with arith.
-Intros H'; Elim H'; Auto with arith.
-Intros H; Elim H; Auto.
-Intros H'0; Elim H'0; Intros H'1 H'2; Inversion H'1.
-Intros n0 H' m; Elim (H' m); Intros H'1 H'2; Elim H'1; Intros E1 E2; Elim H'2;
- Intros E3 E4; Clear H'1 H'2.
-Split; Split.
-Intros H'0; Case E3.
-Inversion H'0; Auto.
-Intros H; Elim H; Intros H0 H1; Clear H; Auto with arith.
-Intros H; Elim H; Intros H0 H1; Clear H; Auto with arith.
-Intros H'0; Case H'0; Intros C0; Case C0; Intros C1 C2.
-Apply odd_S.
-Apply E4; Left; Split; Auto with arith.
-Inversion C1; Auto.
-Apply odd_S.
-Apply E4; Right; Split; Auto with arith.
-Inversion C1; Auto.
-Intros H'0.
-Case E1.
-Inversion H'0; Auto.
-Intros H; Elim H; Intros H0 H1; Clear H; Auto with arith.
-Intros H; Elim H; Intros H0 H1; Clear H; Auto with arith.
-Intros H'0; Case H'0; Intros C0; Case C0; Intros C1 C2.
-Apply even_S.
-Apply E2; Left; Split; Auto with arith.
-Inversion C1; Auto.
-Apply even_S.
-Apply E2; Right; Split; Auto with arith.
-Inversion C1; Auto.
-Qed.
-
-Lemma even_even_plus : (n,m:nat) (even n) -> (even m) -> (even (plus n m)).
-Proof.
-Intros n m; Case (even_plus_aux n m).
-Intros H H0; Case H0; Auto.
-Qed.
-
-Lemma odd_even_plus : (n,m:nat) (odd n) -> (odd m) -> (even (plus n m)).
-Proof.
-Intros n m; Case (even_plus_aux n m).
-Intros H H0; Case H0; Auto.
-Qed.
-
-Lemma even_plus_even_inv_r :
- (n,m:nat) (even (plus n m)) -> (even n) -> (even m).
-Proof.
-Intros n m H; Case (even_plus_aux n m).
-Intros H' H'0; Elim H'0.
-Intros H'1; Case H'1; Auto.
-Intros H0; Elim H0; Auto.
-Intros H0 H1 H2; Case (not_even_and_odd n); Auto.
-Case H0; Auto.
-Qed.
-
-Lemma even_plus_even_inv_l :
- (n,m:nat) (even (plus n m)) -> (even m) -> (even n).
-Proof.
-Intros n m H; Case (even_plus_aux n m).
-Intros H' H'0; Elim H'0.
-Intros H'1; Case H'1; Auto.
-Intros H0; Elim H0; Auto.
-Intros H0 H1 H2; Case (not_even_and_odd m); Auto.
-Case H0; Auto.
-Qed.
-
-Lemma even_plus_odd_inv_r : (n,m:nat) (even (plus n m)) -> (odd n) -> (odd m).
-Proof.
-Intros n m H; Case (even_plus_aux n m).
-Intros H' H'0; Elim H'0.
-Intros H'1; Case H'1; Auto.
-Intros H0 H1 H2; Case (not_even_and_odd n); Auto.
-Case H0; Auto.
-Intros H0; Case H0; Auto.
-Qed.
-
-Lemma even_plus_odd_inv_l : (n,m:nat) (even (plus n m)) -> (odd m) -> (odd n).
-Proof.
-Intros n m H; Case (even_plus_aux n m).
-Intros H' H'0; Elim H'0.
-Intros H'1; Case H'1; Auto.
-Intros H0 H1 H2; Case (not_even_and_odd m); Auto.
-Case H0; Auto.
-Intros H0; Case H0; Auto.
-Qed.
-Hints Resolve even_even_plus odd_even_plus :arith.
-
-Lemma odd_plus_l : (n,m:nat) (odd n) -> (even m) -> (odd (plus n m)).
-Proof.
-Intros n m; Case (even_plus_aux n m).
-Intros H; Case H; Auto.
-Qed.
-
-Lemma odd_plus_r : (n,m:nat) (even n) -> (odd m) -> (odd (plus n m)).
-Proof.
-Intros n m; Case (even_plus_aux n m).
-Intros H; Case H; Auto.
-Qed.
-
-Lemma odd_plus_even_inv_l : (n,m:nat) (odd (plus n m)) -> (odd m) -> (even n).
-Proof.
-Intros n m H; Case (even_plus_aux n m).
-Intros H' H'0; Elim H'.
-Intros H'1; Case H'1; Auto.
-Intros H0 H1 H2; Case (not_even_and_odd m); Auto.
-Case H0; Auto.
-Intros H0; Case H0; Auto.
-Qed.
-
-Lemma odd_plus_even_inv_r : (n,m:nat) (odd (plus n m)) -> (odd n) -> (even m).
-Proof.
-Intros n m H; Case (even_plus_aux n m).
-Intros H' H'0; Elim H'.
-Intros H'1; Case H'1; Auto.
-Intros H0; Case H0; Auto.
-Intros H0 H1 H2; Case (not_even_and_odd n); Auto.
-Case H0; Auto.
-Qed.
-
-Lemma odd_plus_odd_inv_l : (n,m:nat) (odd (plus n m)) -> (even m) -> (odd n).
-Proof.
-Intros n m H; Case (even_plus_aux n m).
-Intros H' H'0; Elim H'.
-Intros H'1; Case H'1; Auto.
-Intros H0; Case H0; Auto.
-Intros H0 H1 H2; Case (not_even_and_odd m); Auto.
-Case H0; Auto.
-Qed.
-
-Lemma odd_plus_odd_inv_r : (n,m:nat) (odd (plus n m)) -> (even n) -> (odd m).
-Proof.
-Intros n m H; Case (even_plus_aux n m).
-Intros H' H'0; Elim H'.
-Intros H'1; Case H'1; Auto.
-Intros H0 H1 H2; Case (not_even_and_odd n); Auto.
-Case H0; Auto.
-Intros H0; Case H0; Auto.
-Qed.
-Hints Resolve odd_plus_l odd_plus_r :arith.
-
-Lemma even_mult_aux :
- (n,m:nat)
- (iff (odd (mult n m)) (odd n) /\ (odd m)) /\
- (iff (even (mult n m)) (even n) \/ (even m)).
-Proof.
-Intros n; Elim n; Simpl; Auto with arith.
-Intros m; Split; Split; Auto with arith.
-Intros H'; Inversion H'.
-Intros H'; Elim H'; Auto.
-Intros n0 H' m; Split; Split; Auto with arith.
-Intros H'0.
-Elim (even_plus_aux m (mult n0 m)); Intros H'3 H'4; Case H'3; Intros H'1 H'2;
- Case H'1; Auto.
-Intros H'5; Elim H'5; Intros H'6 H'7; Auto with arith.
-Split; Auto with arith.
-Case (H' m).
-Intros H'8 H'9; Case H'9.
-Intros H'10; Case H'10; Auto with arith.
-Intros H'11 H'12; Case (not_even_and_odd m); Auto with arith.
-Intros H'5; Elim H'5; Intros H'6 H'7; Case (not_even_and_odd (mult n0 m)); Auto.
-Case (H' m).
-Intros H'8 H'9; Case H'9; Auto.
-Intros H'0; Elim H'0; Intros H'1 H'2; Clear H'0.
-Elim (even_plus_aux m (mult n0 m)); Auto.
-Intros H'0 H'3.
-Elim H'0.
-Intros H'4 H'5; Apply H'5; Auto.
-Left; Split; Auto with arith.
-Case (H' m).
-Intros H'6 H'7; Elim H'7.
-Intros H'8 H'9; Apply H'9.
-Left.
-Inversion H'1; Auto.
-Intros H'0.
-Elim (even_plus_aux m (mult n0 m)); Intros H'3 H'4; Case H'4.
-Intros H'1 H'2.
-Elim H'1; Auto.
-Intros H; Case H; Auto.
-Intros H'5; Elim H'5; Intros H'6 H'7; Auto with arith.
-Left.
-Case (H' m).
-Intros H'8; Elim H'8.
-Intros H'9; Elim H'9; Auto with arith.
-Intros H'0; Elim H'0; Intros H'1.
-Case (even_or_odd m); Intros H'2.
-Apply even_even_plus; Auto.
-Case (H' m).
-Intros H H0; Case H0; Auto.
-Apply odd_even_plus; Auto.
-Inversion H'1; Case (H' m); Auto.
-Intros H1; Case H1; Auto.
-Apply even_even_plus; Auto.
-Case (H' m).
-Intros H H0; Case H0; Auto.
-Qed.
-
-Lemma even_mult_l : (n,m:nat) (even n) -> (even (mult n m)).
-Proof.
-Intros n m; Case (even_mult_aux n m); Auto.
-Intros H H0; Case H0; Auto.
-Qed.
-
-Lemma even_mult_r: (n,m:nat) (even m) -> (even (mult n m)).
-Proof.
-Intros n m; Case (even_mult_aux n m); Auto.
-Intros H H0; Case H0; Auto.
-Qed.
-Hints Resolve even_mult_l even_mult_r :arith.
-
-Lemma even_mult_inv_r: (n,m:nat) (even (mult n m)) -> (odd n) -> (even m).
-Proof.
-Intros n m H' H'0.
-Case (even_mult_aux n m).
-Intros H'1 H'2; Elim H'2.
-Intros H'3; Elim H'3; Auto.
-Intros H; Case (not_even_and_odd n); Auto.
-Qed.
-
-Lemma even_mult_inv_l : (n,m:nat) (even (mult n m)) -> (odd m) -> (even n).
-Proof.
-Intros n m H' H'0.
-Case (even_mult_aux n m).
-Intros H'1 H'2; Elim H'2.
-Intros H'3; Elim H'3; Auto.
-Intros H; Case (not_even_and_odd m); Auto.
-Qed.
-
-Lemma odd_mult : (n,m:nat) (odd n) -> (odd m) -> (odd (mult n m)).
-Proof.
-Intros n m; Case (even_mult_aux n m); Intros H; Case H; Auto.
-Qed.
-Hints Resolve even_mult_l even_mult_r odd_mult :arith.
-
-Lemma odd_mult_inv_l : (n,m:nat) (odd (mult n m)) -> (odd n).
-Proof.
-Intros n m H'.
-Case (even_mult_aux n m).
-Intros H'1 H'2; Elim H'1.
-Intros H'3; Elim H'3; Auto.
-Qed.
-
-Lemma odd_mult_inv_r : (n,m:nat) (odd (mult n m)) -> (odd m).
-Proof.
-Intros n m H'.
-Case (even_mult_aux n m).
-Intros H'1 H'2; Elim H'1.
-Intros H'3; Elim H'3; Auto.
-Qed.
-