summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zpower.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zpower.v')
-rw-r--r--theories/ZArith/Zpower.v671
1 files changed, 342 insertions, 329 deletions
diff --git a/theories/ZArith/Zpower.v b/theories/ZArith/Zpower.v
index 70a2bd45..446f663c 100644
--- a/theories/ZArith/Zpower.v
+++ b/theories/ZArith/Zpower.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zpower.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Zpower.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import ZArith_base.
Require Import Omega.
@@ -15,81 +15,84 @@ Open Local Scope Z_scope.
Section section1.
+(** * Definition of powers over [Z]*)
+
(** [Zpower_nat z n] is the n-th power of [z] when [n] is an unary
integer (type [nat]) and [z] a signed integer (type [Z]) *)
-Definition Zpower_nat (z:Z) (n:nat) := iter_nat n Z (fun x:Z => z * x) 1.
-
-(** [Zpower_nat_is_exp] says [Zpower_nat] is a morphism for
- [plus : nat->nat] and [Zmult : Z->Z] *)
-
-Lemma Zpower_nat_is_exp :
- forall (n m:nat) (z:Z),
- Zpower_nat z (n + m) = Zpower_nat z n * Zpower_nat z m.
-
-intros; elim n;
- [ simpl in |- *; elim (Zpower_nat z m); auto with zarith
- | unfold Zpower_nat in |- *; intros; simpl in |- *; rewrite H;
- apply Zmult_assoc ].
-Qed.
-
-(** [Zpower_pos z n] is the n-th power of [z] when [n] is an binary
- integer (type [positive]) and [z] a signed integer (type [Z]) *)
-
-Definition Zpower_pos (z:Z) (n:positive) := iter_pos n Z (fun x:Z => z * x) 1.
-
-(** This theorem shows that powers of unary and binary integers
- are the same thing, modulo the function convert : [positive -> nat] *)
-
-Theorem Zpower_pos_nat :
- forall (z:Z) (p:positive), Zpower_pos z p = Zpower_nat z (nat_of_P p).
-
-intros; unfold Zpower_pos in |- *; unfold Zpower_nat in |- *;
- apply iter_nat_of_P.
-Qed.
-
-(** Using the theorem [Zpower_pos_nat] and the lemma [Zpower_nat_is_exp] we
- deduce that the function [[n:positive](Zpower_pos z n)] is a morphism
- for [add : positive->positive] and [Zmult : Z->Z] *)
-
-Theorem Zpower_pos_is_exp :
- forall (n m:positive) (z:Z),
- Zpower_pos z (n + m) = Zpower_pos z n * Zpower_pos z m.
-
-intros.
-rewrite (Zpower_pos_nat z n).
-rewrite (Zpower_pos_nat z m).
-rewrite (Zpower_pos_nat z (n + m)).
-rewrite (nat_of_P_plus_morphism n m).
-apply Zpower_nat_is_exp.
-Qed.
-
-Definition Zpower (x y:Z) :=
- match y with
- | Zpos p => Zpower_pos x p
- | Z0 => 1
- | Zneg p => 0
- end.
-
-Infix "^" := Zpower : Z_scope.
-
-Hint Immediate Zpower_nat_is_exp: zarith.
-Hint Immediate Zpower_pos_is_exp: zarith.
-Hint Unfold Zpower_pos: zarith.
-Hint Unfold Zpower_nat: zarith.
-
-Lemma Zpower_exp :
- forall x n m:Z, n >= 0 -> m >= 0 -> x ^ (n + m) = x ^ n * x ^ m.
-destruct n; destruct m; auto with zarith.
-simpl in |- *; intros; apply Zred_factor0.
-simpl in |- *; auto with zarith.
-intros; compute in H0; absurd (Datatypes.Lt = Datatypes.Lt); auto with zarith.
-intros; compute in H0; absurd (Datatypes.Lt = Datatypes.Lt); auto with zarith.
-Qed.
+ Definition Zpower_nat (z:Z) (n:nat) := iter_nat n Z (fun x:Z => z * x) 1.
+
+ (** [Zpower_nat_is_exp] says [Zpower_nat] is a morphism for
+ [plus : nat->nat] and [Zmult : Z->Z] *)
+
+ Lemma Zpower_nat_is_exp :
+ forall (n m:nat) (z:Z),
+ Zpower_nat z (n + m) = Zpower_nat z n * Zpower_nat z m.
+ Proof.
+ intros; elim n;
+ [ simpl in |- *; elim (Zpower_nat z m); auto with zarith
+ | unfold Zpower_nat in |- *; intros; simpl in |- *; rewrite H;
+ apply Zmult_assoc ].
+ Qed.
+
+ (** [Zpower_pos z n] is the n-th power of [z] when [n] is an binary
+ integer (type [positive]) and [z] a signed integer (type [Z]) *)
+
+ Definition Zpower_pos (z:Z) (n:positive) := iter_pos n Z (fun x:Z => z * x) 1.
+
+ (** This theorem shows that powers of unary and binary integers
+ are the same thing, modulo the function convert : [positive -> nat] *)
+
+ Theorem Zpower_pos_nat :
+ forall (z:Z) (p:positive), Zpower_pos z p = Zpower_nat z (nat_of_P p).
+ Proof.
+ intros; unfold Zpower_pos in |- *; unfold Zpower_nat in |- *;
+ apply iter_nat_of_P.
+ Qed.
+
+ (** Using the theorem [Zpower_pos_nat] and the lemma [Zpower_nat_is_exp] we
+ deduce that the function [[n:positive](Zpower_pos z n)] is a morphism
+ for [add : positive->positive] and [Zmult : Z->Z] *)
+
+ Theorem Zpower_pos_is_exp :
+ forall (n m:positive) (z:Z),
+ Zpower_pos z (n + m) = Zpower_pos z n * Zpower_pos z m.
+ Proof.
+ intros.
+ rewrite (Zpower_pos_nat z n).
+ rewrite (Zpower_pos_nat z m).
+ rewrite (Zpower_pos_nat z (n + m)).
+ rewrite (nat_of_P_plus_morphism n m).
+ apply Zpower_nat_is_exp.
+ Qed.
+
+ Definition Zpower (x y:Z) :=
+ match y with
+ | Zpos p => Zpower_pos x p
+ | Z0 => 1
+ | Zneg p => 0
+ end.
+
+ Infix "^" := Zpower : Z_scope.
+
+ Hint Immediate Zpower_nat_is_exp: zarith.
+ Hint Immediate Zpower_pos_is_exp: zarith.
+ Hint Unfold Zpower_pos: zarith.
+ Hint Unfold Zpower_nat: zarith.
+
+ Lemma Zpower_exp :
+ forall x n m:Z, n >= 0 -> m >= 0 -> x ^ (n + m) = x ^ n * x ^ m.
+ Proof.
+ destruct n; destruct m; auto with zarith.
+ simpl in |- *; intros; apply Zred_factor0.
+ simpl in |- *; auto with zarith.
+ intros; compute in H0; absurd (Datatypes.Lt = Datatypes.Lt); auto with zarith.
+ intros; compute in H0; absurd (Datatypes.Lt = Datatypes.Lt); auto with zarith.
+ Qed.
End section1.
-(* Exporting notation "^" *)
+(** Exporting notation "^" *)
Infix "^" := Zpower : Z_scope.
@@ -100,273 +103,283 @@ Hint Unfold Zpower_nat: zarith.
Section Powers_of_2.
-(** For the powers of two, that will be widely used, a more direct
- calculus is possible. We will also prove some properties such
- as [(x:positive) x < 2^x] that are true for all integers bigger
- than 2 but more difficult to prove and useless. *)
-
-(** [shift n m] computes [2^n * m], or [m] shifted by [n] positions *)
-
-Definition shift_nat (n:nat) (z:positive) := iter_nat n positive xO z.
-Definition shift_pos (n z:positive) := iter_pos n positive xO z.
-Definition shift (n:Z) (z:positive) :=
- match n with
- | Z0 => z
- | Zpos p => iter_pos p positive xO z
- | Zneg p => z
- end.
-
-Definition two_power_nat (n:nat) := Zpos (shift_nat n 1).
-Definition two_power_pos (x:positive) := Zpos (shift_pos x 1).
-
-Lemma two_power_nat_S :
- forall n:nat, two_power_nat (S n) = 2 * two_power_nat n.
-intro; simpl in |- *; apply refl_equal.
-Qed.
-
-Lemma shift_nat_plus :
- forall (n m:nat) (x:positive),
- shift_nat (n + m) x = shift_nat n (shift_nat m x).
-
-intros; unfold shift_nat in |- *; apply iter_nat_plus.
-Qed.
-
-Theorem shift_nat_correct :
- forall (n:nat) (x:positive), Zpos (shift_nat n x) = Zpower_nat 2 n * Zpos x.
-
-unfold shift_nat in |- *; simple induction n;
- [ simpl in |- *; trivial with zarith
- | intros; replace (Zpower_nat 2 (S n0)) with (2 * Zpower_nat 2 n0);
- [ rewrite <- Zmult_assoc; rewrite <- (H x); simpl in |- *; reflexivity
- | auto with zarith ] ].
-Qed.
-
-Theorem two_power_nat_correct :
- forall n:nat, two_power_nat n = Zpower_nat 2 n.
-
-intro n.
-unfold two_power_nat in |- *.
-rewrite (shift_nat_correct n).
-omega.
-Qed.
+ (** * Powers of 2 *)
+
+ (** For the powers of two, that will be widely used, a more direct
+ calculus is possible. We will also prove some properties such
+ as [(x:positive) x < 2^x] that are true for all integers bigger
+ than 2 but more difficult to prove and useless. *)
+
+ (** [shift n m] computes [2^n * m], or [m] shifted by [n] positions *)
+
+ Definition shift_nat (n:nat) (z:positive) := iter_nat n positive xO z.
+ Definition shift_pos (n z:positive) := iter_pos n positive xO z.
+ Definition shift (n:Z) (z:positive) :=
+ match n with
+ | Z0 => z
+ | Zpos p => iter_pos p positive xO z
+ | Zneg p => z
+ end.
+
+ Definition two_power_nat (n:nat) := Zpos (shift_nat n 1).
+ Definition two_power_pos (x:positive) := Zpos (shift_pos x 1).
+
+ Lemma two_power_nat_S :
+ forall n:nat, two_power_nat (S n) = 2 * two_power_nat n.
+ Proof.
+ intro; simpl in |- *; apply refl_equal.
+ Qed.
+
+ Lemma shift_nat_plus :
+ forall (n m:nat) (x:positive),
+ shift_nat (n + m) x = shift_nat n (shift_nat m x).
+ Proof.
+ intros; unfold shift_nat in |- *; apply iter_nat_plus.
+ Qed.
+
+ Theorem shift_nat_correct :
+ forall (n:nat) (x:positive), Zpos (shift_nat n x) = Zpower_nat 2 n * Zpos x.
+ Proof.
+ unfold shift_nat in |- *; simple induction n;
+ [ simpl in |- *; trivial with zarith
+ | intros; replace (Zpower_nat 2 (S n0)) with (2 * Zpower_nat 2 n0);
+ [ rewrite <- Zmult_assoc; rewrite <- (H x); simpl in |- *; reflexivity
+ | auto with zarith ] ].
+ Qed.
+
+ Theorem two_power_nat_correct :
+ forall n:nat, two_power_nat n = Zpower_nat 2 n.
+ Proof.
+ intro n.
+ unfold two_power_nat in |- *.
+ rewrite (shift_nat_correct n).
+ omega.
+ Qed.
+
+ (** Second we show that [two_power_pos] and [two_power_nat] are the same *)
+ Lemma shift_pos_nat :
+ forall p x:positive, shift_pos p x = shift_nat (nat_of_P p) x.
+ Proof.
+ unfold shift_pos in |- *.
+ unfold shift_nat in |- *.
+ intros; apply iter_nat_of_P.
+ Qed.
+
+ Lemma two_power_pos_nat :
+ forall p:positive, two_power_pos p = two_power_nat (nat_of_P p).
+ Proof.
+ intro; unfold two_power_pos in |- *; unfold two_power_nat in |- *.
+ apply f_equal with (f := Zpos).
+ apply shift_pos_nat.
+ Qed.
+
+ (** Then we deduce that [two_power_pos] is also correct *)
+
+ Theorem shift_pos_correct :
+ forall p x:positive, Zpos (shift_pos p x) = Zpower_pos 2 p * Zpos x.
+ Proof.
+ intros.
+ rewrite (shift_pos_nat p x).
+ rewrite (Zpower_pos_nat 2 p).
+ apply shift_nat_correct.
+ Qed.
+
+ Theorem two_power_pos_correct :
+ forall x:positive, two_power_pos x = Zpower_pos 2 x.
+ Proof.
+ intro.
+ rewrite two_power_pos_nat.
+ rewrite Zpower_pos_nat.
+ apply two_power_nat_correct.
+ Qed.
+
+ (** Some consequences *)
+
+ Theorem two_power_pos_is_exp :
+ forall x y:positive,
+ two_power_pos (x + y) = two_power_pos x * two_power_pos y.
+ Proof.
+ intros.
+ rewrite (two_power_pos_correct (x + y)).
+ rewrite (two_power_pos_correct x).
+ rewrite (two_power_pos_correct y).
+ apply Zpower_pos_is_exp.
+ Qed.
+
+ (** The exponentiation [z -> 2^z] for [z] a signed integer.
+ For convenience, we assume that [2^z = 0] for all [z < 0]
+ We could also define a inductive type [Log_result] with
+ 3 contructors [ Zero | Pos positive -> | minus_infty]
+ but it's more complexe and not so useful. *)
-(** Second we show that [two_power_pos] and [two_power_nat] are the same *)
-Lemma shift_pos_nat :
- forall p x:positive, shift_pos p x = shift_nat (nat_of_P p) x.
-
-unfold shift_pos in |- *.
-unfold shift_nat in |- *.
-intros; apply iter_nat_of_P.
-Qed.
-
-Lemma two_power_pos_nat :
- forall p:positive, two_power_pos p = two_power_nat (nat_of_P p).
-
-intro; unfold two_power_pos in |- *; unfold two_power_nat in |- *.
-apply f_equal with (f := Zpos).
-apply shift_pos_nat.
-Qed.
-
-(** Then we deduce that [two_power_pos] is also correct *)
-
-Theorem shift_pos_correct :
- forall p x:positive, Zpos (shift_pos p x) = Zpower_pos 2 p * Zpos x.
-
-intros.
-rewrite (shift_pos_nat p x).
-rewrite (Zpower_pos_nat 2 p).
-apply shift_nat_correct.
-Qed.
-
-Theorem two_power_pos_correct :
- forall x:positive, two_power_pos x = Zpower_pos 2 x.
-
-intro.
-rewrite two_power_pos_nat.
-rewrite Zpower_pos_nat.
-apply two_power_nat_correct.
-Qed.
-
-(** Some consequences *)
-
-Theorem two_power_pos_is_exp :
- forall x y:positive,
- two_power_pos (x + y) = two_power_pos x * two_power_pos y.
-intros.
-rewrite (two_power_pos_correct (x + y)).
-rewrite (two_power_pos_correct x).
-rewrite (two_power_pos_correct y).
-apply Zpower_pos_is_exp.
-Qed.
-
-(** The exponentiation [z -> 2^z] for [z] a signed integer.
- For convenience, we assume that [2^z = 0] for all [z < 0]
- We could also define a inductive type [Log_result] with
- 3 contructors [ Zero | Pos positive -> | minus_infty]
- but it's more complexe and not so useful. *)
-
-Definition two_p (x:Z) :=
- match x with
- | Z0 => 1
- | Zpos y => two_power_pos y
- | Zneg y => 0
- end.
-
-Theorem two_p_is_exp :
- forall x y:Z, 0 <= x -> 0 <= y -> two_p (x + y) = two_p x * two_p y.
-simple induction x;
- [ simple induction y; simpl in |- *; auto with zarith
- | simple induction y;
- [ unfold two_p in |- *; rewrite (Zmult_comm (two_power_pos p) 1);
- rewrite (Zmult_1_l (two_power_pos p)); auto with zarith
- | unfold Zplus in |- *; unfold two_p in |- *; intros;
- apply two_power_pos_is_exp
- | intros; unfold Zle in H0; unfold Zcompare in H0;
- absurd (Datatypes.Gt = Datatypes.Gt); trivial with zarith ]
- | simple induction y;
- [ simpl in |- *; auto with zarith
- | intros; unfold Zle in H; unfold Zcompare in H;
- absurd (Datatypes.Gt = Datatypes.Gt); trivial with zarith
- | intros; unfold Zle in H; unfold Zcompare in H;
- absurd (Datatypes.Gt = Datatypes.Gt); trivial with zarith ] ].
-Qed.
-
-Lemma two_p_gt_ZERO : forall x:Z, 0 <= x -> two_p x > 0.
-simple induction x; intros;
- [ simpl in |- *; omega
- | simpl in |- *; unfold two_power_pos in |- *; apply Zorder.Zgt_pos_0
- | absurd (0 <= Zneg p);
- [ simpl in |- *; unfold Zle in |- *; unfold Zcompare in |- *;
- do 2 unfold not in |- *; auto with zarith
- | assumption ] ].
-Qed.
-
-Lemma two_p_S : forall x:Z, 0 <= x -> two_p (Zsucc x) = 2 * two_p x.
-intros; unfold Zsucc in |- *.
-rewrite (two_p_is_exp x 1 H (Zorder.Zle_0_pos 1)).
-apply Zmult_comm.
-Qed.
-
-Lemma two_p_pred : forall x:Z, 0 <= x -> two_p (Zpred x) < two_p x.
-intros; apply natlike_ind with (P := fun x:Z => two_p (Zpred x) < two_p x);
- [ simpl in |- *; unfold Zlt in |- *; auto with zarith
- | intros; elim (Zle_lt_or_eq 0 x0 H0);
- [ intros;
- replace (two_p (Zpred (Zsucc x0))) with (two_p (Zsucc (Zpred x0)));
- [ rewrite (two_p_S (Zpred x0));
- [ rewrite (two_p_S x0); [ omega | assumption ]
- | apply Zorder.Zlt_0_le_0_pred; assumption ]
- | rewrite <- (Zsucc_pred x0); rewrite <- (Zpred_succ x0);
- trivial with zarith ]
- | intro Hx0; rewrite <- Hx0; simpl in |- *; unfold Zlt in |- *;
- auto with zarith ]
- | assumption ].
-Qed.
-
-Lemma Zlt_lt_double : forall x y:Z, 0 <= x < y -> x < 2 * y.
-intros; omega. Qed.
-
-End Powers_of_2.
+ Definition two_p (x:Z) :=
+ match x with
+ | Z0 => 1
+ | Zpos y => two_power_pos y
+ | Zneg y => 0
+ end.
+
+ Theorem two_p_is_exp :
+ forall x y:Z, 0 <= x -> 0 <= y -> two_p (x + y) = two_p x * two_p y.
+ Proof.
+ simple induction x;
+ [ simple induction y; simpl in |- *; auto with zarith
+ | simple induction y;
+ [ unfold two_p in |- *; rewrite (Zmult_comm (two_power_pos p) 1);
+ rewrite (Zmult_1_l (two_power_pos p)); auto with zarith
+ | unfold Zplus in |- *; unfold two_p in |- *; intros;
+ apply two_power_pos_is_exp
+ | intros; unfold Zle in H0; unfold Zcompare in H0;
+ absurd (Datatypes.Gt = Datatypes.Gt); trivial with zarith ]
+ | simple induction y;
+ [ simpl in |- *; auto with zarith
+ | intros; unfold Zle in H; unfold Zcompare in H;
+ absurd (Datatypes.Gt = Datatypes.Gt); trivial with zarith
+ | intros; unfold Zle in H; unfold Zcompare in H;
+ absurd (Datatypes.Gt = Datatypes.Gt); trivial with zarith ] ].
+ Qed.
+
+ Lemma two_p_gt_ZERO : forall x:Z, 0 <= x -> two_p x > 0.
+ Proof.
+ simple induction x; intros;
+ [ simpl in |- *; omega
+ | simpl in |- *; unfold two_power_pos in |- *; apply Zorder.Zgt_pos_0
+ | absurd (0 <= Zneg p);
+ [ simpl in |- *; unfold Zle in |- *; unfold Zcompare in |- *;
+ do 2 unfold not in |- *; auto with zarith
+ | assumption ] ].
+ Qed.
+
+ Lemma two_p_S : forall x:Z, 0 <= x -> two_p (Zsucc x) = 2 * two_p x.
+ Proof.
+ intros; unfold Zsucc in |- *.
+ rewrite (two_p_is_exp x 1 H (Zorder.Zle_0_pos 1)).
+ apply Zmult_comm.
+ Qed.
+
+ Lemma two_p_pred : forall x:Z, 0 <= x -> two_p (Zpred x) < two_p x.
+ Proof.
+ intros; apply natlike_ind with (P := fun x:Z => two_p (Zpred x) < two_p x);
+ [ simpl in |- *; unfold Zlt in |- *; auto with zarith
+ | intros; elim (Zle_lt_or_eq 0 x0 H0);
+ [ intros;
+ replace (two_p (Zpred (Zsucc x0))) with (two_p (Zsucc (Zpred x0)));
+ [ rewrite (two_p_S (Zpred x0));
+ [ rewrite (two_p_S x0); [ omega | assumption ]
+ | apply Zorder.Zlt_0_le_0_pred; assumption ]
+ | rewrite <- (Zsucc_pred x0); rewrite <- (Zpred_succ x0);
+ trivial with zarith ]
+ | intro Hx0; rewrite <- Hx0; simpl in |- *; unfold Zlt in |- *;
+ auto with zarith ]
+ | assumption ].
+ Qed.
+
+ Lemma Zlt_lt_double : forall x y:Z, 0 <= x < y -> x < 2 * y.
+ intros; omega. Qed.
+
+ End Powers_of_2.
Hint Resolve two_p_gt_ZERO: zarith.
Hint Immediate two_p_pred two_p_S: zarith.
Section power_div_with_rest.
-(** Division by a power of two.
- To [n:Z] and [p:positive], [q],[r] are associated such that
- [n = 2^p.q + r] and [0 <= r < 2^p] *)
-
-(** Invariant: [d*q + r = d'*q + r /\ d' = 2*d /\ 0<= r < d /\ 0 <= r' < d'] *)
-Definition Zdiv_rest_aux (qrd:Z * Z * Z) :=
- let (qr, d) := qrd in
- let (q, r) := qr in
- (match q with
- | Z0 => (0, r)
- | Zpos xH => (0, d + r)
- | Zpos (xI n) => (Zpos n, d + r)
- | Zpos (xO n) => (Zpos n, r)
- | Zneg xH => (-1, d + r)
- | Zneg (xI n) => (Zneg n - 1, d + r)
- | Zneg (xO n) => (Zneg n, r)
- end, 2 * d).
-
-Definition Zdiv_rest (x:Z) (p:positive) :=
- let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in qr.
-
-Lemma Zdiv_rest_correct1 :
- forall (x:Z) (p:positive),
- let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in d = two_power_pos p.
-
-intros x p; rewrite (iter_nat_of_P p _ Zdiv_rest_aux (x, 0, 1));
- rewrite (two_power_pos_nat p); elim (nat_of_P p);
- simpl in |- *;
- [ trivial with zarith
- | intro n; rewrite (two_power_nat_S n); unfold Zdiv_rest_aux at 2 in |- *;
- elim (iter_nat n (Z * Z * Z) Zdiv_rest_aux (x, 0, 1));
- destruct a; intros; apply f_equal with (f := fun z:Z => 2 * z);
- assumption ].
-Qed.
-
-Lemma Zdiv_rest_correct2 :
- forall (x:Z) (p:positive),
- let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in
- let (q, r) := qr in x = q * d + r /\ 0 <= r < d.
-
-intros;
- apply iter_pos_invariant with
- (f := Zdiv_rest_aux)
- (Inv := fun qrd:Z * Z * Z =>
- let (qr, d) := qrd in
+ (** * Division by a power of two. *)
+
+ (** To [n:Z] and [p:positive], [q],[r] are associated such that
+ [n = 2^p.q + r] and [0 <= r < 2^p] *)
+
+ (** Invariant: [d*q + r = d'*q + r /\ d' = 2*d /\ 0<= r < d /\ 0 <= r' < d'] *)
+ Definition Zdiv_rest_aux (qrd:Z * Z * Z) :=
+ let (qr, d) := qrd in
+ let (q, r) := qr in
+ (match q with
+ | Z0 => (0, r)
+ | Zpos xH => (0, d + r)
+ | Zpos (xI n) => (Zpos n, d + r)
+ | Zpos (xO n) => (Zpos n, r)
+ | Zneg xH => (-1, d + r)
+ | Zneg (xI n) => (Zneg n - 1, d + r)
+ | Zneg (xO n) => (Zneg n, r)
+ end, 2 * d).
+
+ Definition Zdiv_rest (x:Z) (p:positive) :=
+ let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in qr.
+
+ Lemma Zdiv_rest_correct1 :
+ forall (x:Z) (p:positive),
+ let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in d = two_power_pos p.
+ Proof.
+ intros x p; rewrite (iter_nat_of_P p _ Zdiv_rest_aux (x, 0, 1));
+ rewrite (two_power_pos_nat p); elim (nat_of_P p);
+ simpl in |- *;
+ [ trivial with zarith
+ | intro n; rewrite (two_power_nat_S n); unfold Zdiv_rest_aux at 2 in |- *;
+ elim (iter_nat n (Z * Z * Z) Zdiv_rest_aux (x, 0, 1));
+ destruct a; intros; apply f_equal with (f := fun z:Z => 2 * z);
+ assumption ].
+ Qed.
+
+ Lemma Zdiv_rest_correct2 :
+ forall (x:Z) (p:positive),
+ let (qr, d) := iter_pos p _ Zdiv_rest_aux (x, 0, 1) in
+ let (q, r) := qr in x = q * d + r /\ 0 <= r < d.
+ Proof.
+ intros;
+ apply iter_pos_invariant with
+ (f := Zdiv_rest_aux)
+ (Inv := fun qrd:Z * Z * Z =>
+ let (qr, d) := qrd in
let (q, r) := qr in x = q * d + r /\ 0 <= r < d);
- [ intro x0; elim x0; intro y0; elim y0; intros q r d;
- unfold Zdiv_rest_aux in |- *; elim q;
- [ omega
- | destruct p0;
- [ rewrite BinInt.Zpos_xI; intro; elim H; intros; split;
- [ rewrite H0; rewrite Zplus_assoc; rewrite Zmult_plus_distr_l;
- rewrite Zmult_1_l; rewrite Zmult_assoc;
- rewrite (Zmult_comm (Zpos p0) 2); apply refl_equal
- | omega ]
- | rewrite BinInt.Zpos_xO; intro; elim H; intros; split;
- [ rewrite H0; rewrite Zmult_assoc; rewrite (Zmult_comm (Zpos p0) 2);
- apply refl_equal
- | omega ]
- | omega ]
- | destruct p0;
- [ rewrite BinInt.Zneg_xI; unfold Zminus in |- *; intro; elim H; intros;
- split;
- [ rewrite H0; rewrite Zplus_assoc;
- apply f_equal with (f := fun z:Z => z + r);
- do 2 rewrite Zmult_plus_distr_l; rewrite Zmult_assoc;
- rewrite (Zmult_comm (Zneg p0) 2); rewrite <- Zplus_assoc;
- apply f_equal with (f := fun z:Z => 2 * Zneg p0 * d + z);
- omega
- | omega ]
- | rewrite BinInt.Zneg_xO; unfold Zminus in |- *; intro; elim H; intros;
- split;
- [ rewrite H0; rewrite Zmult_assoc; rewrite (Zmult_comm (Zneg p0) 2);
- apply refl_equal
- | omega ]
- | omega ] ]
- | omega ].
-Qed.
-
-Inductive Zdiv_rest_proofs (x:Z) (p:positive) : Set :=
+ [ intro x0; elim x0; intro y0; elim y0; intros q r d;
+ unfold Zdiv_rest_aux in |- *; elim q;
+ [ omega
+ | destruct p0;
+ [ rewrite BinInt.Zpos_xI; intro; elim H; intros; split;
+ [ rewrite H0; rewrite Zplus_assoc; rewrite Zmult_plus_distr_l;
+ rewrite Zmult_1_l; rewrite Zmult_assoc;
+ rewrite (Zmult_comm (Zpos p0) 2); apply refl_equal
+ | omega ]
+ | rewrite BinInt.Zpos_xO; intro; elim H; intros; split;
+ [ rewrite H0; rewrite Zmult_assoc; rewrite (Zmult_comm (Zpos p0) 2);
+ apply refl_equal
+ | omega ]
+ | omega ]
+ | destruct p0;
+ [ rewrite BinInt.Zneg_xI; unfold Zminus in |- *; intro; elim H; intros;
+ split;
+ [ rewrite H0; rewrite Zplus_assoc;
+ apply f_equal with (f := fun z:Z => z + r);
+ do 2 rewrite Zmult_plus_distr_l; rewrite Zmult_assoc;
+ rewrite (Zmult_comm (Zneg p0) 2); rewrite <- Zplus_assoc;
+ apply f_equal with (f := fun z:Z => 2 * Zneg p0 * d + z);
+ omega
+ | omega ]
+ | rewrite BinInt.Zneg_xO; unfold Zminus in |- *; intro; elim H; intros;
+ split;
+ [ rewrite H0; rewrite Zmult_assoc; rewrite (Zmult_comm (Zneg p0) 2);
+ apply refl_equal
+ | omega ]
+ | omega ] ]
+ | omega ].
+ Qed.
+
+ Inductive Zdiv_rest_proofs (x:Z) (p:positive) : Set :=
Zdiv_rest_proof :
- forall q r:Z,
- x = q * two_power_pos p + r ->
- 0 <= r -> r < two_power_pos p -> Zdiv_rest_proofs x p.
-
-Lemma Zdiv_rest_correct : forall (x:Z) (p:positive), Zdiv_rest_proofs x p.
-intros x p.
-generalize (Zdiv_rest_correct1 x p); generalize (Zdiv_rest_correct2 x p).
-elim (iter_pos p (Z * Z * Z) Zdiv_rest_aux (x, 0, 1)).
-simple induction a.
-intros.
-elim H; intros H1 H2; clear H.
-rewrite H0 in H1; rewrite H0 in H2; elim H2; intros;
- apply Zdiv_rest_proof with (q := a0) (r := b); assumption.
-Qed.
+ forall q r:Z,
+ x = q * two_power_pos p + r ->
+ 0 <= r -> r < two_power_pos p -> Zdiv_rest_proofs x p.
+
+ Lemma Zdiv_rest_correct : forall (x:Z) (p:positive), Zdiv_rest_proofs x p.
+ Proof.
+ intros x p.
+ generalize (Zdiv_rest_correct1 x p); generalize (Zdiv_rest_correct2 x p).
+ elim (iter_pos p (Z * Z * Z) Zdiv_rest_aux (x, 0, 1)).
+ simple induction a.
+ intros.
+ elim H; intros H1 H2; clear H.
+ rewrite H0 in H1; rewrite H0 in H2; elim H2; intros;
+ apply Zdiv_rest_proof with (q := a0) (r := b); assumption.
+ Qed.
End power_div_with_rest. \ No newline at end of file