summaryrefslogtreecommitdiff
path: root/theories/ZArith/Znumtheory.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Znumtheory.v')
-rw-r--r--theories/ZArith/Znumtheory.v640
1 files changed, 640 insertions, 0 deletions
diff --git a/theories/ZArith/Znumtheory.v b/theories/ZArith/Znumtheory.v
new file mode 100644
index 00000000..715cdc7d
--- /dev/null
+++ b/theories/ZArith/Znumtheory.v
@@ -0,0 +1,640 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Znumtheory.v,v 1.5.2.1 2004/07/16 19:31:22 herbelin Exp $ i*)
+
+Require Import ZArith_base.
+Require Import ZArithRing.
+Require Import Zcomplements.
+Require Import Zdiv.
+Open Local Scope Z_scope.
+
+(** This file contains some notions of number theory upon Z numbers:
+ - a divisibility predicate [Zdivide]
+ - a gcd predicate [gcd]
+ - Euclid algorithm [euclid]
+ - an efficient [Zgcd] function
+ - a relatively prime predicate [rel_prime]
+ - a prime predicate [prime]
+*)
+
+(** * Divisibility *)
+
+Inductive Zdivide (a b:Z) : Prop :=
+ Zdivide_intro : forall q:Z, b = q * a -> Zdivide a b.
+
+(** Syntax for divisibility *)
+
+Notation "( a | b )" := (Zdivide a b) (at level 0) : Z_scope.
+
+(** Results concerning divisibility*)
+
+Lemma Zdivide_refl : forall a:Z, (a | a).
+Proof.
+intros; apply Zdivide_intro with 1; ring.
+Qed.
+
+Lemma Zone_divide : forall a:Z, (1 | a).
+Proof.
+intros; apply Zdivide_intro with a; ring.
+Qed.
+
+Lemma Zdivide_0 : forall a:Z, (a | 0).
+Proof.
+intros; apply Zdivide_intro with 0; ring.
+Qed.
+
+Hint Resolve Zdivide_refl Zone_divide Zdivide_0: zarith.
+
+Lemma Zmult_divide_compat_l : forall a b c:Z, (a | b) -> (c * a | c * b).
+Proof.
+simple induction 1; intros; apply Zdivide_intro with q.
+rewrite H0; ring.
+Qed.
+
+Lemma Zmult_divide_compat_r : forall a b c:Z, (a | b) -> (a * c | b * c).
+Proof.
+intros a b c; rewrite (Zmult_comm a c); rewrite (Zmult_comm b c).
+apply Zmult_divide_compat_l; trivial.
+Qed.
+
+Hint Resolve Zmult_divide_compat_l Zmult_divide_compat_r: zarith.
+
+Lemma Zdivide_plus_r : forall a b c:Z, (a | b) -> (a | c) -> (a | b + c).
+Proof.
+simple induction 1; intros q Hq; simple induction 1; intros q' Hq'.
+apply Zdivide_intro with (q + q').
+rewrite Hq; rewrite Hq'; ring.
+Qed.
+
+Lemma Zdivide_opp_r : forall a b:Z, (a | b) -> (a | - b).
+Proof.
+simple induction 1; intros; apply Zdivide_intro with (- q).
+rewrite H0; ring.
+Qed.
+
+Lemma Zdivide_opp_r_rev : forall a b:Z, (a | - b) -> (a | b).
+Proof.
+intros; replace b with (- - b). apply Zdivide_opp_r; trivial. ring.
+Qed.
+
+Lemma Zdivide_opp_l : forall a b:Z, (a | b) -> (- a | b).
+Proof.
+simple induction 1; intros; apply Zdivide_intro with (- q).
+rewrite H0; ring.
+Qed.
+
+Lemma Zdivide_opp_l_rev : forall a b:Z, (- a | b) -> (a | b).
+Proof.
+intros; replace a with (- - a). apply Zdivide_opp_l; trivial. ring.
+Qed.
+
+Lemma Zdivide_minus_l : forall a b c:Z, (a | b) -> (a | c) -> (a | b - c).
+Proof.
+simple induction 1; intros q Hq; simple induction 1; intros q' Hq'.
+apply Zdivide_intro with (q - q').
+rewrite Hq; rewrite Hq'; ring.
+Qed.
+
+Lemma Zdivide_mult_l : forall a b c:Z, (a | b) -> (a | b * c).
+Proof.
+simple induction 1; intros q Hq; apply Zdivide_intro with (q * c).
+rewrite Hq; ring.
+Qed.
+
+Lemma Zdivide_mult_r : forall a b c:Z, (a | c) -> (a | b * c).
+Proof.
+simple induction 1; intros q Hq; apply Zdivide_intro with (q * b).
+rewrite Hq; ring.
+Qed.
+
+Lemma Zdivide_factor_r : forall a b:Z, (a | a * b).
+Proof.
+intros; apply Zdivide_intro with b; ring.
+Qed.
+
+Lemma Zdivide_factor_l : forall a b:Z, (a | b * a).
+Proof.
+intros; apply Zdivide_intro with b; ring.
+Qed.
+
+Hint Resolve Zdivide_plus_r Zdivide_opp_r Zdivide_opp_r_rev Zdivide_opp_l
+ Zdivide_opp_l_rev Zdivide_minus_l Zdivide_mult_l Zdivide_mult_r
+ Zdivide_factor_r Zdivide_factor_l: zarith.
+
+(** Auxiliary result. *)
+
+Lemma Zmult_one : forall x y:Z, x >= 0 -> x * y = 1 -> x = 1.
+Proof.
+intros x y H H0; destruct (Zmult_1_inversion_l _ _ H0) as [Hpos| Hneg].
+ assumption.
+ rewrite Hneg in H; simpl in H.
+ contradiction (Zle_not_lt 0 (-1)).
+ apply Zge_le; assumption.
+ apply Zorder.Zlt_neg_0.
+Qed.
+
+(** Only [1] and [-1] divide [1]. *)
+
+Lemma Zdivide_1 : forall x:Z, (x | 1) -> x = 1 \/ x = -1.
+Proof.
+simple induction 1; intros.
+elim (Z_lt_ge_dec 0 x); [ left | right ].
+apply Zmult_one with q; auto with zarith; rewrite H0; ring.
+assert (- x = 1); auto with zarith.
+apply Zmult_one with (- q); auto with zarith; rewrite H0; ring.
+Qed.
+
+(** If [a] divides [b] and [b] divides [a] then [a] is [b] or [-b]. *)
+
+Lemma Zdivide_antisym : forall a b:Z, (a | b) -> (b | a) -> a = b \/ a = - b.
+Proof.
+simple induction 1; intros.
+inversion H1.
+rewrite H0 in H2; clear H H1.
+case (Z_zerop a); intro.
+left; rewrite H0; rewrite e; ring.
+assert (Hqq0 : q0 * q = 1).
+apply Zmult_reg_l with a.
+assumption.
+ring.
+pattern a at 2 in |- *; rewrite H2; ring.
+assert (q | 1).
+rewrite <- Hqq0; auto with zarith.
+elim (Zdivide_1 q H); intros.
+rewrite H1 in H0; left; omega.
+rewrite H1 in H0; right; omega.
+Qed.
+
+(** If [a] divides [b] and [b<>0] then [|a| <= |b|]. *)
+
+Lemma Zdivide_bounds : forall a b:Z, (a | b) -> b <> 0 -> Zabs a <= Zabs b.
+Proof.
+simple induction 1; intros.
+assert (Zabs b = Zabs q * Zabs a).
+ subst; apply Zabs_Zmult.
+rewrite H2.
+assert (H3 := Zabs_pos q).
+assert (H4 := Zabs_pos a).
+assert (Zabs q * Zabs a >= 1 * Zabs a); auto with zarith.
+apply Zmult_ge_compat; auto with zarith.
+elim (Z_lt_ge_dec (Zabs q) 1); [ intros | auto with zarith ].
+assert (Zabs q = 0).
+ omega.
+assert (q = 0).
+ rewrite <- (Zabs_Zsgn q).
+rewrite H5; auto with zarith.
+subst q; omega.
+Qed.
+
+(** * Greatest common divisor (gcd). *)
+
+(** There is no unicity of the gcd; hence we define the predicate [gcd a b d]
+ expressing that [d] is a gcd of [a] and [b].
+ (We show later that the [gcd] is actually unique if we discard its sign.) *)
+
+Inductive Zis_gcd (a b d:Z) : Prop :=
+ Zis_gcd_intro :
+ (d | a) ->
+ (d | b) -> (forall x:Z, (x | a) -> (x | b) -> (x | d)) -> Zis_gcd a b d.
+
+(** Trivial properties of [gcd] *)
+
+Lemma Zis_gcd_sym : forall a b d:Z, Zis_gcd a b d -> Zis_gcd b a d.
+Proof.
+simple induction 1; constructor; intuition.
+Qed.
+
+Lemma Zis_gcd_0 : forall a:Z, Zis_gcd a 0 a.
+Proof.
+constructor; auto with zarith.
+Qed.
+
+Lemma Zis_gcd_minus : forall a b d:Z, Zis_gcd a (- b) d -> Zis_gcd b a d.
+Proof.
+simple induction 1; constructor; intuition.
+Qed.
+
+Lemma Zis_gcd_opp : forall a b d:Z, Zis_gcd a b d -> Zis_gcd b a (- d).
+Proof.
+simple induction 1; constructor; intuition.
+Qed.
+
+Hint Resolve Zis_gcd_sym Zis_gcd_0 Zis_gcd_minus Zis_gcd_opp: zarith.
+
+(** * Extended Euclid algorithm. *)
+
+(** Euclid's algorithm to compute the [gcd] mainly relies on
+ the following property. *)
+
+Lemma Zis_gcd_for_euclid :
+ forall a b d q:Z, Zis_gcd b (a - q * b) d -> Zis_gcd a b d.
+Proof.
+simple induction 1; constructor; intuition.
+replace a with (a - q * b + q * b). auto with zarith. ring.
+Qed.
+
+Lemma Zis_gcd_for_euclid2 :
+ forall b d q r:Z, Zis_gcd r b d -> Zis_gcd b (b * q + r) d.
+Proof.
+simple induction 1; constructor; intuition.
+apply H2; auto.
+replace r with (b * q + r - b * q). auto with zarith. ring.
+Qed.
+
+(** We implement the extended version of Euclid's algorithm,
+ i.e. the one computing Bezout's coefficients as it computes
+ the [gcd]. We follow the algorithm given in Knuth's
+ "Art of Computer Programming", vol 2, page 325. *)
+
+Section extended_euclid_algorithm.
+
+Variables a b : Z.
+
+(** The specification of Euclid's algorithm is the existence of
+ [u], [v] and [d] such that [ua+vb=d] and [(gcd a b d)]. *)
+
+Inductive Euclid : Set :=
+ Euclid_intro :
+ forall u v d:Z, u * a + v * b = d -> Zis_gcd a b d -> Euclid.
+
+(** The recursive part of Euclid's algorithm uses well-founded
+ recursion of non-negative integers. It maintains 6 integers
+ [u1,u2,u3,v1,v2,v3] such that the following invariant holds:
+ [u1*a+u2*b=u3] and [v1*a+v2*b=v3] and [gcd(u2,v3)=gcd(a,b)].
+ *)
+
+Lemma euclid_rec :
+ forall v3:Z,
+ 0 <= v3 ->
+ forall u1 u2 u3 v1 v2:Z,
+ u1 * a + u2 * b = u3 ->
+ v1 * a + v2 * b = v3 ->
+ (forall d:Z, Zis_gcd u3 v3 d -> Zis_gcd a b d) -> Euclid.
+Proof.
+intros v3 Hv3; generalize Hv3; pattern v3 in |- *.
+apply Z_lt_rec.
+clear v3 Hv3; intros.
+elim (Z_zerop x); intro.
+apply Euclid_intro with (u := u1) (v := u2) (d := u3).
+assumption.
+apply H2.
+rewrite a0; auto with zarith.
+set (q := u3 / x) in *.
+assert (Hq : 0 <= u3 - q * x < x).
+replace (u3 - q * x) with (u3 mod x).
+apply Z_mod_lt; omega.
+assert (xpos : x > 0). omega.
+generalize (Z_div_mod_eq u3 x xpos).
+unfold q in |- *.
+intro eq; pattern u3 at 2 in |- *; rewrite eq; ring.
+apply (H (u3 - q * x) Hq (proj1 Hq) v1 v2 x (u1 - q * v1) (u2 - q * v2)).
+tauto.
+replace ((u1 - q * v1) * a + (u2 - q * v2) * b) with
+ (u1 * a + u2 * b - q * (v1 * a + v2 * b)).
+rewrite H0; rewrite H1; trivial.
+ring.
+intros; apply H2.
+apply Zis_gcd_for_euclid with q; assumption.
+assumption.
+Qed.
+
+(** We get Euclid's algorithm by applying [euclid_rec] on
+ [1,0,a,0,1,b] when [b>=0] and [1,0,a,0,-1,-b] when [b<0]. *)
+
+Lemma euclid : Euclid.
+Proof.
+case (Z_le_gt_dec 0 b); intro.
+intros;
+ apply euclid_rec with
+ (u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := 1) (v3 := b);
+ auto with zarith; ring.
+intros;
+ apply euclid_rec with
+ (u1 := 1) (u2 := 0) (u3 := a) (v1 := 0) (v2 := -1) (v3 := - b);
+ auto with zarith; try ring.
+Qed.
+
+End extended_euclid_algorithm.
+
+Theorem Zis_gcd_uniqueness_apart_sign :
+ forall a b d d':Z, Zis_gcd a b d -> Zis_gcd a b d' -> d = d' \/ d = - d'.
+Proof.
+simple induction 1.
+intros H1 H2 H3; simple induction 1; intros.
+generalize (H3 d' H4 H5); intro Hd'd.
+generalize (H6 d H1 H2); intro Hdd'.
+exact (Zdivide_antisym d d' Hdd' Hd'd).
+Qed.
+
+(** * Bezout's coefficients *)
+
+Inductive Bezout (a b d:Z) : Prop :=
+ Bezout_intro : forall u v:Z, u * a + v * b = d -> Bezout a b d.
+
+(** Existence of Bezout's coefficients for the [gcd] of [a] and [b] *)
+
+Lemma Zis_gcd_bezout : forall a b d:Z, Zis_gcd a b d -> Bezout a b d.
+Proof.
+intros a b d Hgcd.
+elim (euclid a b); intros u v d0 e g.
+generalize (Zis_gcd_uniqueness_apart_sign a b d d0 Hgcd g).
+intro H; elim H; clear H; intros.
+apply Bezout_intro with u v.
+rewrite H; assumption.
+apply Bezout_intro with (- u) (- v).
+rewrite H; rewrite <- e; ring.
+Qed.
+
+(** gcd of [ca] and [cb] is [c gcd(a,b)]. *)
+
+Lemma Zis_gcd_mult :
+ forall a b c d:Z, Zis_gcd a b d -> Zis_gcd (c * a) (c * b) (c * d).
+Proof.
+intros a b c d; simple induction 1; constructor; intuition.
+elim (Zis_gcd_bezout a b d H); intros.
+elim H3; intros.
+elim H4; intros.
+apply Zdivide_intro with (u * q + v * q0).
+rewrite <- H5.
+replace (c * (u * a + v * b)) with (u * (c * a) + v * (c * b)).
+rewrite H6; rewrite H7; ring.
+ring.
+Qed.
+
+(** We could obtain a [Zgcd] function via [euclid]. But we propose
+ here a more direct version of a [Zgcd], with better extraction
+ (no bezout coeffs). *)
+
+Definition Zgcd_pos :
+ forall a:Z,
+ 0 <= a -> forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0}.
+Proof.
+intros a Ha.
+apply
+ (Z_lt_rec
+ (fun a:Z => forall b:Z, {g : Z | 0 <= a -> Zis_gcd a b g /\ g >= 0}));
+ try assumption.
+intro x; case x.
+intros _ b; exists (Zabs b).
+ elim (Z_le_lt_eq_dec _ _ (Zabs_pos b)).
+ intros H0; split.
+ apply Zabs_ind.
+ intros; apply Zis_gcd_sym; apply Zis_gcd_0; auto.
+ intros; apply Zis_gcd_opp; apply Zis_gcd_0; auto.
+ auto with zarith.
+
+ intros H0; rewrite <- H0.
+ rewrite <- (Zabs_Zsgn b); rewrite <- H0; simpl in |- *.
+ split; [ apply Zis_gcd_0 | idtac ]; auto with zarith.
+
+intros p Hrec b.
+generalize (Z_div_mod b (Zpos p)).
+case (Zdiv_eucl b (Zpos p)); intros q r Hqr.
+elim Hqr; clear Hqr; intros; auto with zarith.
+elim (Hrec r H0 (Zpos p)); intros g Hgkl.
+inversion_clear H0.
+elim (Hgkl H1); clear Hgkl; intros H3 H4.
+exists g; intros.
+split; auto.
+rewrite H.
+apply Zis_gcd_for_euclid2; auto.
+
+intros p Hrec b.
+exists 0; intros.
+elim H; auto.
+Defined.
+
+Definition Zgcd_spec : forall a b:Z, {g : Z | Zis_gcd a b g /\ g >= 0}.
+Proof.
+intros a; case (Z_gt_le_dec 0 a).
+intros; assert (0 <= - a).
+omega.
+elim (Zgcd_pos (- a) H b); intros g Hgkl.
+exists g.
+intuition.
+intros Ha b; elim (Zgcd_pos a Ha b); intros g; exists g; intuition.
+Defined.
+
+Definition Zgcd (a b:Z) := let (g, _) := Zgcd_spec a b in g.
+
+Lemma Zgcd_is_pos : forall a b:Z, Zgcd a b >= 0.
+intros a b; unfold Zgcd in |- *; case (Zgcd_spec a b); tauto.
+Qed.
+
+Lemma Zgcd_is_gcd : forall a b:Z, Zis_gcd a b (Zgcd a b).
+intros a b; unfold Zgcd in |- *; case (Zgcd_spec a b); tauto.
+Qed.
+
+(** * Relative primality *)
+
+Definition rel_prime (a b:Z) : Prop := Zis_gcd a b 1.
+
+(** Bezout's theorem: [a] and [b] are relatively prime if and
+ only if there exist [u] and [v] such that [ua+vb = 1]. *)
+
+Lemma rel_prime_bezout : forall a b:Z, rel_prime a b -> Bezout a b 1.
+Proof.
+intros a b; exact (Zis_gcd_bezout a b 1).
+Qed.
+
+Lemma bezout_rel_prime : forall a b:Z, Bezout a b 1 -> rel_prime a b.
+Proof.
+simple induction 1; constructor; auto with zarith.
+intros. rewrite <- H0; auto with zarith.
+Qed.
+
+(** Gauss's theorem: if [a] divides [bc] and if [a] and [b] are
+ relatively prime, then [a] divides [c]. *)
+
+Theorem Gauss : forall a b c:Z, (a | b * c) -> rel_prime a b -> (a | c).
+Proof.
+intros. elim (rel_prime_bezout a b H0); intros.
+replace c with (c * 1); [ idtac | ring ].
+rewrite <- H1.
+replace (c * (u * a + v * b)) with (c * u * a + v * (b * c));
+ [ eauto with zarith | ring ].
+Qed.
+
+(** If [a] is relatively prime to [b] and [c], then it is to [bc] *)
+
+Lemma rel_prime_mult :
+ forall a b c:Z, rel_prime a b -> rel_prime a c -> rel_prime a (b * c).
+Proof.
+intros a b c Hb Hc.
+elim (rel_prime_bezout a b Hb); intros.
+elim (rel_prime_bezout a c Hc); intros.
+apply bezout_rel_prime.
+apply Bezout_intro with
+ (u := u * u0 * a + v0 * c * u + u0 * v * b) (v := v * v0).
+rewrite <- H.
+replace (u * a + v * b) with ((u * a + v * b) * 1); [ idtac | ring ].
+rewrite <- H0.
+ring.
+Qed.
+
+Lemma rel_prime_cross_prod :
+ forall a b c d:Z,
+ rel_prime a b ->
+ rel_prime c d -> b > 0 -> d > 0 -> a * d = b * c -> a = c /\ b = d.
+Proof.
+intros a b c d; intros.
+elim (Zdivide_antisym b d).
+split; auto with zarith.
+rewrite H4 in H3.
+rewrite Zmult_comm in H3.
+apply Zmult_reg_l with d; auto with zarith.
+intros; omega.
+apply Gauss with a.
+rewrite H3.
+auto with zarith.
+red in |- *; auto with zarith.
+apply Gauss with c.
+rewrite Zmult_comm.
+rewrite <- H3.
+auto with zarith.
+red in |- *; auto with zarith.
+Qed.
+
+(** After factorization by a gcd, the original numbers are relatively prime. *)
+
+Lemma Zis_gcd_rel_prime :
+ forall a b g:Z,
+ b > 0 -> g >= 0 -> Zis_gcd a b g -> rel_prime (a / g) (b / g).
+intros a b g; intros.
+assert (g <> 0).
+ intro.
+ elim H1; intros.
+ elim H4; intros.
+ rewrite H2 in H6; subst b; omega.
+unfold rel_prime in |- *.
+elim (Zgcd_spec (a / g) (b / g)); intros g' [H3 H4].
+assert (H5 := Zis_gcd_mult _ _ g _ H3).
+rewrite <- Z_div_exact_2 in H5; auto with zarith.
+rewrite <- Z_div_exact_2 in H5; auto with zarith.
+elim (Zis_gcd_uniqueness_apart_sign _ _ _ _ H1 H5).
+intros; rewrite (Zmult_reg_l 1 g' g); auto with zarith.
+intros; rewrite (Zmult_reg_l 1 (- g') g); auto with zarith.
+pattern g at 1 in |- *; rewrite H6; ring.
+
+elim H1; intros.
+elim H7; intros.
+rewrite H9.
+replace (q * g) with (0 + q * g).
+rewrite Z_mod_plus.
+compute in |- *; auto.
+omega.
+ring.
+
+elim H1; intros.
+elim H6; intros.
+rewrite H9.
+replace (q * g) with (0 + q * g).
+rewrite Z_mod_plus.
+compute in |- *; auto.
+omega.
+ring.
+Qed.
+
+(** * Primality *)
+
+Inductive prime (p:Z) : Prop :=
+ prime_intro :
+ 1 < p -> (forall n:Z, 1 <= n < p -> rel_prime n p) -> prime p.
+
+(** The sole divisors of a prime number [p] are [-1], [1], [p] and [-p]. *)
+
+Lemma prime_divisors :
+ forall p:Z,
+ prime p -> forall a:Z, (a | p) -> a = -1 \/ a = 1 \/ a = p \/ a = - p.
+Proof.
+simple induction 1; intros.
+assert
+ (a = - p \/ - p < a < -1 \/ a = -1 \/ a = 0 \/ a = 1 \/ 1 < a < p \/ a = p).
+assert (Zabs a <= Zabs p). apply Zdivide_bounds; [ assumption | omega ].
+generalize H3.
+pattern (Zabs a) in |- *; apply Zabs_ind; pattern (Zabs p) in |- *;
+ apply Zabs_ind; intros; omega.
+intuition idtac.
+(* -p < a < -1 *)
+absurd (rel_prime (- a) p); intuition.
+inversion H3.
+assert (- a | - a); auto with zarith.
+assert (- a | p); auto with zarith.
+generalize (H8 (- a) H9 H10); intuition idtac.
+generalize (Zdivide_1 (- a) H11); intuition.
+(* a = 0 *)
+inversion H2. subst a; omega.
+(* 1 < a < p *)
+absurd (rel_prime a p); intuition.
+inversion H3.
+assert (a | a); auto with zarith.
+assert (a | p); auto with zarith.
+generalize (H8 a H9 H10); intuition idtac.
+generalize (Zdivide_1 a H11); intuition.
+Qed.
+
+(** A prime number is relatively prime with any number it does not divide *)
+
+Lemma prime_rel_prime :
+ forall p:Z, prime p -> forall a:Z, ~ (p | a) -> rel_prime p a.
+Proof.
+simple induction 1; intros.
+constructor; intuition.
+elim (prime_divisors p H x H3); intuition; subst; auto with zarith.
+absurd (p | a); auto with zarith.
+absurd (p | a); intuition.
+Qed.
+
+Hint Resolve prime_rel_prime: zarith.
+
+(** [Zdivide] can be expressed using [Zmod]. *)
+
+Lemma Zmod_divide : forall a b:Z, b > 0 -> a mod b = 0 -> (b | a).
+intros a b H H0.
+apply Zdivide_intro with (a / b).
+pattern a at 1 in |- *; rewrite (Z_div_mod_eq a b H).
+rewrite H0; ring.
+Qed.
+
+Lemma Zdivide_mod : forall a b:Z, b > 0 -> (b | a) -> a mod b = 0.
+intros a b; simple destruct 2; intros; subst.
+change (q * b) with (0 + q * b) in |- *.
+rewrite Z_mod_plus; auto.
+Qed.
+
+(** [Zdivide] is hence decidable *)
+
+Lemma Zdivide_dec : forall a b:Z, {(a | b)} + {~ (a | b)}.
+Proof.
+intros a b; elim (Ztrichotomy_inf a 0).
+(* a<0 *)
+intros H; elim H; intros.
+case (Z_eq_dec (b mod - a) 0).
+left; apply Zdivide_opp_l_rev; apply Zmod_divide; auto with zarith.
+intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
+(* a=0 *)
+case (Z_eq_dec b 0); intro.
+left; subst; auto with zarith.
+right; subst; intro H0; inversion H0; omega.
+(* a>0 *)
+intro H; case (Z_eq_dec (b mod a) 0).
+left; apply Zmod_divide; auto with zarith.
+intro H1; right; intro; elim H1; apply Zdivide_mod; auto with zarith.
+Qed.
+
+(** If a prime [p] divides [ab] then it divides either [a] or [b] *)
+
+Lemma prime_mult :
+ forall p:Z, prime p -> forall a b:Z, (p | a * b) -> (p | a) \/ (p | b).
+Proof.
+intro p; simple induction 1; intros.
+case (Zdivide_dec p a); intuition.
+right; apply Gauss with a; auto with zarith.
+Qed.
+