summaryrefslogtreecommitdiff
path: root/theories/ZArith/Znat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Znat.v')
-rw-r--r--theories/ZArith/Znat.v1063
1 files changed, 887 insertions, 176 deletions
diff --git a/theories/ZArith/Znat.v b/theories/ZArith/Znat.v
index 9585b6f6..e3843990 100644
--- a/theories/ZArith/Znat.v
+++ b/theories/ZArith/Znat.v
@@ -1,286 +1,997 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Znat.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
Require Export Arith_base.
-Require Import BinPos.
-Require Import BinInt.
-Require Import Zcompare.
-Require Import Zorder.
-Require Import Decidable.
-Require Import Peano_dec.
-Require Import Min Max Zmin Zmax.
-Require Export Compare_dec.
+Require Import BinPos BinInt BinNat Pnat Nnat.
+
+Local Open Scope Z_scope.
+
+(** * Chains of conversions *)
+
+(** When combining successive conversions, we have the following
+ commutative diagram:
+<<
+ ---> Nat ----
+ | ^ |
+ | | v
+ Pos ---------> Z
+ | | ^
+ | v |
+ ----> N -----
+>>
+*)
+
+Lemma nat_N_Z n : Z.of_N (N.of_nat n) = Z.of_nat n.
+Proof.
+ now destruct n.
+Qed.
-Open Local Scope Z_scope.
+Lemma N_nat_Z n : Z.of_nat (N.to_nat n) = Z.of_N n.
+Proof.
+ destruct n; trivial. simpl.
+ destruct (Pos2Nat.is_succ p) as (m,H).
+ rewrite H. simpl. f_equal. now apply SuccNat2Pos.inv.
+Qed.
-Definition neq (x y:nat) := x <> y.
+Lemma positive_nat_Z p : Z.of_nat (Pos.to_nat p) = Zpos p.
+Proof.
+ destruct (Pos2Nat.is_succ p) as (n,H).
+ rewrite H. simpl. f_equal. now apply SuccNat2Pos.inv.
+Qed.
+
+Lemma positive_N_Z p : Z.of_N (Npos p) = Zpos p.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma positive_N_nat p : N.to_nat (Npos p) = Pos.to_nat p.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma positive_nat_N p : N.of_nat (Pos.to_nat p) = Npos p.
+Proof.
+ destruct (Pos2Nat.is_succ p) as (n,H).
+ rewrite H. simpl. f_equal. now apply SuccNat2Pos.inv.
+Qed.
-(************************************************)
-(** Properties of the injection from nat into Z *)
+Lemma Z_N_nat n : N.to_nat (Z.to_N n) = Z.to_nat n.
+Proof.
+ now destruct n.
+Qed.
-(** Injection and successor *)
+Lemma Z_nat_N n : N.of_nat (Z.to_nat n) = Z.to_N n.
+Proof.
+ destruct n; simpl; trivial. apply positive_nat_N.
+Qed.
-Theorem inj_0 : Z_of_nat 0 = 0%Z.
+Lemma Zabs_N_nat n : N.to_nat (Z.abs_N n) = Z.abs_nat n.
Proof.
- reflexivity.
+ now destruct n.
Qed.
-Theorem inj_S : forall n:nat, Z_of_nat (S n) = Zsucc (Z_of_nat n).
+Lemma Zabs_nat_N n : N.of_nat (Z.abs_nat n) = Z.abs_N n.
Proof.
- intro y; induction y as [| n H];
- [ unfold Zsucc in |- *; simpl in |- *; trivial with arith
- | change (Zpos (Psucc (P_of_succ_nat n)) = Zsucc (Z_of_nat (S n))) in |- *;
- rewrite Zpos_succ_morphism; trivial with arith ].
+ destruct n; simpl; trivial; apply positive_nat_N.
Qed.
-(** Injection and equality. *)
-Theorem inj_eq : forall n m:nat, n = m -> Z_of_nat n = Z_of_nat m.
+(** * Conversions between [Z] and [N] *)
+
+Module N2Z.
+
+(** [Z.of_N] is a bijection between [N] and non-negative [Z],
+ with [Z.to_N] (or [Z.abs_N]) as reciprocal.
+ See [Z2N.id] below for the dual equation. *)
+
+Lemma id n : Z.to_N (Z.of_N n) = n.
Proof.
- intros x y H; rewrite H; trivial with arith.
+ now destruct n.
Qed.
-Theorem inj_neq : forall n m:nat, neq n m -> Zne (Z_of_nat n) (Z_of_nat m).
+(** [Z.of_N] is hence injective *)
+
+Lemma inj n m : Z.of_N n = Z.of_N m -> n = m.
Proof.
- unfold neq, Zne, not in |- *; intros x y H1 H2; apply H1; generalize H2;
- case x; case y; intros;
- [ auto with arith
- | discriminate H0
- | discriminate H0
- | simpl in H0; injection H0;
- do 2 rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ;
- intros E; rewrite E; auto with arith ].
+ destruct n, m; simpl; congruence.
Qed.
-Theorem inj_eq_rev : forall n m:nat, Z_of_nat n = Z_of_nat m -> n = m.
+Lemma inj_iff n m : Z.of_N n = Z.of_N m <-> n = m.
Proof.
- intros x y H.
- destruct (eq_nat_dec x y) as [H'|H']; auto.
- exfalso.
- exact (inj_neq _ _ H' H).
+ split. apply inj. intros; now f_equal.
Qed.
-Theorem inj_eq_iff : forall n m:nat, n=m <-> Z_of_nat n = Z_of_nat m.
+(** [Z.of_N] produce non-negative integers *)
+
+Lemma is_nonneg n : 0 <= Z.of_N n.
Proof.
- split; [apply inj_eq | apply inj_eq_rev].
+ now destruct n.
Qed.
+(** [Z.of_N], basic equations *)
+
+Lemma inj_0 : Z.of_N 0 = 0.
+Proof.
+ reflexivity.
+Qed.
-(** Injection and order relations: *)
+Lemma inj_pos p : Z.of_N (Npos p) = Zpos p.
+Proof.
+ reflexivity.
+Qed.
-(** One way ... *)
+(** [Z.of_N] and usual operations. *)
-Theorem inj_le : forall n m:nat, (n <= m)%nat -> Z_of_nat n <= Z_of_nat m.
+Lemma inj_compare n m : (Z.of_N n ?= Z.of_N m) = (n ?= m)%N.
Proof.
- intros x y; intros H; elim H;
- [ unfold Zle in |- *; elim (Zcompare_Eq_iff_eq (Z_of_nat x) (Z_of_nat x));
- intros H1 H2; rewrite H2; [ discriminate | trivial with arith ]
- | intros m H1 H2; apply Zle_trans with (Z_of_nat m);
- [ assumption | rewrite inj_S; apply Zle_succ ] ].
+ now destruct n, m.
Qed.
-Theorem inj_lt : forall n m:nat, (n < m)%nat -> Z_of_nat n < Z_of_nat m.
+Lemma inj_le n m : (n<=m)%N <-> Z.of_N n <= Z.of_N m.
Proof.
- intros x y H; apply Zgt_lt; apply Zle_succ_gt; rewrite <- inj_S; apply inj_le;
- exact H.
+ unfold Z.le. now rewrite inj_compare.
Qed.
-Theorem inj_ge : forall n m:nat, (n >= m)%nat -> Z_of_nat n >= Z_of_nat m.
+Lemma inj_lt n m : (n<m)%N <-> Z.of_N n < Z.of_N m.
Proof.
- intros x y H; apply Zle_ge; apply inj_le; apply H.
+ unfold Z.lt. now rewrite inj_compare.
Qed.
-Theorem inj_gt : forall n m:nat, (n > m)%nat -> Z_of_nat n > Z_of_nat m.
+Lemma inj_ge n m : (n>=m)%N <-> Z.of_N n >= Z.of_N m.
Proof.
- intros x y H; apply Zlt_gt; apply inj_lt; exact H.
+ unfold Z.ge. now rewrite inj_compare.
Qed.
-(** The other way ... *)
+Lemma inj_gt n m : (n>m)%N <-> Z.of_N n > Z.of_N m.
+Proof.
+ unfold Z.gt. now rewrite inj_compare.
+Qed.
-Theorem inj_le_rev : forall n m:nat, Z_of_nat n <= Z_of_nat m -> (n <= m)%nat.
+Lemma inj_abs_N z : Z.of_N (Z.abs_N z) = Z.abs z.
Proof.
- intros x y H.
- destruct (le_lt_dec x y) as [H0|H0]; auto.
- exfalso.
- assert (H1:=inj_lt _ _ H0).
- red in H; red in H1.
- rewrite <- Zcompare_antisym in H; rewrite H1 in H; auto.
+ now destruct z.
Qed.
-Theorem inj_lt_rev : forall n m:nat, Z_of_nat n < Z_of_nat m -> (n < m)%nat.
+Lemma inj_add n m : Z.of_N (n+m) = Z.of_N n + Z.of_N m.
Proof.
- intros x y H.
- destruct (le_lt_dec y x) as [H0|H0]; auto.
- exfalso.
- assert (H1:=inj_le _ _ H0).
- red in H; red in H1.
- rewrite <- Zcompare_antisym in H1; rewrite H in H1; auto.
+ now destruct n, m.
Qed.
-Theorem inj_ge_rev : forall n m:nat, Z_of_nat n >= Z_of_nat m -> (n >= m)%nat.
+Lemma inj_mul n m : Z.of_N (n*m) = Z.of_N n * Z.of_N m.
Proof.
- intros x y H.
- destruct (le_lt_dec y x) as [H0|H0]; auto.
- exfalso.
- assert (H1:=inj_gt _ _ H0).
- red in H; red in H1.
- rewrite <- Zcompare_antisym in H; rewrite H1 in H; auto.
+ now destruct n, m.
Qed.
-Theorem inj_gt_rev : forall n m:nat, Z_of_nat n > Z_of_nat m -> (n > m)%nat.
+Lemma inj_sub_max n m : Z.of_N (n-m) = Z.max 0 (Z.of_N n - Z.of_N m).
Proof.
- intros x y H.
- destruct (le_lt_dec x y) as [H0|H0]; auto.
- exfalso.
- assert (H1:=inj_ge _ _ H0).
- red in H; red in H1.
- rewrite <- Zcompare_antisym in H1; rewrite H in H1; auto.
+ destruct n as [|n], m as [|m]; simpl; trivial.
+ rewrite Z.pos_sub_spec, Pos.compare_sub_mask. unfold Pos.sub.
+ now destruct (Pos.sub_mask n m).
Qed.
-(* Both ways ... *)
+Lemma inj_sub n m : (m<=n)%N -> Z.of_N (n-m) = Z.of_N n - Z.of_N m.
+Proof.
+ intros H. rewrite inj_sub_max.
+ unfold N.le in H.
+ rewrite N.compare_antisym, <- inj_compare, Z.compare_sub in H.
+ destruct (Z.of_N n - Z.of_N m); trivial; now destruct H.
+Qed.
-Theorem inj_le_iff : forall n m:nat, (n<=m)%nat <-> Z_of_nat n <= Z_of_nat m.
+Lemma inj_succ n : Z.of_N (N.succ n) = Z.succ (Z.of_N n).
Proof.
- split; [apply inj_le | apply inj_le_rev].
+ destruct n. trivial. simpl. now rewrite Pos.add_1_r.
Qed.
-Theorem inj_lt_iff : forall n m:nat, (n<m)%nat <-> Z_of_nat n < Z_of_nat m.
+Lemma inj_pred_max n : Z.of_N (N.pred n) = Z.max 0 (Z.pred (Z.of_N n)).
Proof.
- split; [apply inj_lt | apply inj_lt_rev].
+ unfold Z.pred. now rewrite N.pred_sub, inj_sub_max.
Qed.
-Theorem inj_ge_iff : forall n m:nat, (n>=m)%nat <-> Z_of_nat n >= Z_of_nat m.
+Lemma inj_pred n : (0<n)%N -> Z.of_N (N.pred n) = Z.pred (Z.of_N n).
Proof.
- split; [apply inj_ge | apply inj_ge_rev].
+ intros H. unfold Z.pred. rewrite N.pred_sub, inj_sub; trivial.
+ now apply N.le_succ_l in H.
Qed.
-Theorem inj_gt_iff : forall n m:nat, (n>m)%nat <-> Z_of_nat n > Z_of_nat m.
+Lemma inj_min n m : Z.of_N (N.min n m) = Z.min (Z.of_N n) (Z.of_N m).
Proof.
- split; [apply inj_gt | apply inj_gt_rev].
+ unfold Z.min, N.min. rewrite inj_compare. now case N.compare.
Qed.
-(** Injection and usual operations *)
+Lemma inj_max n m : Z.of_N (N.max n m) = Z.max (Z.of_N n) (Z.of_N m).
+Proof.
+ unfold Z.max, N.max. rewrite inj_compare.
+ case N.compare_spec; intros; subst; trivial.
+Qed.
-Theorem inj_plus : forall n m:nat, Z_of_nat (n + m) = Z_of_nat n + Z_of_nat m.
+Lemma inj_div n m : Z.of_N (n/m) = Z.of_N n / Z.of_N m.
Proof.
- intro x; induction x as [| n H]; intro y; destruct y as [| m];
- [ simpl in |- *; trivial with arith
- | simpl in |- *; trivial with arith
- | simpl in |- *; rewrite <- plus_n_O; trivial with arith
- | change (Z_of_nat (S (n + S m)) = Z_of_nat (S n) + Z_of_nat (S m)) in |- *;
- rewrite inj_S; rewrite H; do 2 rewrite inj_S; rewrite Zplus_succ_l;
- trivial with arith ].
+ destruct m as [|m]. now destruct n.
+ apply Z.div_unique_pos with (Z.of_N (n mod (Npos m))).
+ split. apply is_nonneg. apply inj_lt. now apply N.mod_lt.
+ rewrite <- inj_mul, <- inj_add. f_equal. now apply N.div_mod.
Qed.
-Theorem inj_mult : forall n m:nat, Z_of_nat (n * m) = Z_of_nat n * Z_of_nat m.
+Lemma inj_mod n m : (m<>0)%N -> Z.of_N (n mod m) = (Z.of_N n) mod (Z.of_N m).
Proof.
- intro x; induction x as [| n H];
- [ simpl in |- *; trivial with arith
- | intro y; rewrite inj_S; rewrite <- Zmult_succ_l_reverse; rewrite <- H;
- rewrite <- inj_plus; simpl in |- *; rewrite plus_comm;
- trivial with arith ].
+ intros Hm.
+ apply Z.mod_unique_pos with (Z.of_N (n / m)).
+ split. apply is_nonneg. apply inj_lt. now apply N.mod_lt.
+ rewrite <- inj_mul, <- inj_add. f_equal. now apply N.div_mod.
Qed.
-Theorem inj_minus1 :
- forall n m:nat, (m <= n)%nat -> Z_of_nat (n - m) = Z_of_nat n - Z_of_nat m.
+Lemma inj_quot n m : Z.of_N (n/m) = Z.of_N n ÷ Z.of_N m.
Proof.
- intros x y H; apply (Zplus_reg_l (Z_of_nat y)); unfold Zminus in |- *;
- rewrite Zplus_permute; rewrite Zplus_opp_r; rewrite <- inj_plus;
- rewrite <- (le_plus_minus y x H); rewrite Zplus_0_r;
- trivial with arith.
+ destruct m.
+ - now destruct n.
+ - rewrite Z.quot_div_nonneg, inj_div; trivial. apply is_nonneg. easy.
Qed.
-Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z_of_nat (n - m) = 0.
+Lemma inj_rem n m : Z.of_N (n mod m) = Z.rem (Z.of_N n) (Z.of_N m).
Proof.
- intros x y H; rewrite not_le_minus_0;
- [ trivial with arith | apply gt_not_le; assumption ].
+ destruct m.
+ - now destruct n.
+ - rewrite Z.rem_mod_nonneg, inj_mod; trivial. easy. apply is_nonneg. easy.
Qed.
-Theorem inj_minus : forall n m:nat,
- Z_of_nat (minus n m) = Zmax 0 (Z_of_nat n - Z_of_nat m).
+Lemma inj_div2 n : Z.of_N (N.div2 n) = Z.div2 (Z.of_N n).
Proof.
- intros.
- rewrite Zmax_comm.
- unfold Zmax.
- destruct (le_lt_dec m n) as [H|H].
+ destruct n as [|p]; trivial. now destruct p.
+Qed.
- rewrite (inj_minus1 _ _ H).
- assert (H':=Zle_minus_le_0 _ _ (inj_le _ _ H)).
- unfold Zle in H'.
- rewrite <- Zcompare_antisym in H'.
- destruct Zcompare; simpl in *; intuition.
+Lemma inj_quot2 n : Z.of_N (N.div2 n) = Z.quot2 (Z.of_N n).
+Proof.
+ destruct n as [|p]; trivial. now destruct p.
+Qed.
- rewrite (inj_minus2 _ _ H).
- assert (H':=Zplus_lt_compat_r _ _ (- Z_of_nat m) (inj_lt _ _ H)).
- rewrite Zplus_opp_r in H'.
- unfold Zminus; rewrite H'; auto.
+Lemma inj_pow n m : Z.of_N (n^m) = (Z.of_N n)^(Z.of_N m).
+Proof.
+ symmetry. destruct n, m; trivial. now apply Z.pow_0_l. apply Z.pow_Zpos.
Qed.
-Theorem inj_min : forall n m:nat,
- Z_of_nat (min n m) = Zmin (Z_of_nat n) (Z_of_nat m).
+End N2Z.
+
+Module Z2N.
+
+(** [Z.to_N] is a bijection between non-negative [Z] and [N],
+ with [Pos.of_N] as reciprocal.
+ See [N2Z.id] above for the dual equation. *)
+
+Lemma id n : 0<=n -> Z.of_N (Z.to_N n) = n.
Proof.
- induction n; destruct m; try (compute; auto; fail).
- simpl min.
- do 3 rewrite inj_S.
- rewrite <- Zsucc_min_distr; f_equal; auto.
+ destruct n; (now destruct 1) || trivial.
Qed.
-Theorem inj_max : forall n m:nat,
- Z_of_nat (max n m) = Zmax (Z_of_nat n) (Z_of_nat m).
+(** [Z.to_N] is hence injective for non-negative integers. *)
+
+Lemma inj n m : 0<=n -> 0<=m -> Z.to_N n = Z.to_N m -> n = m.
Proof.
- induction n; destruct m; try (compute; auto; fail).
- simpl max.
- do 3 rewrite inj_S.
- rewrite <- Zsucc_max_distr; f_equal; auto.
+ intros. rewrite <- (id n), <- (id m) by trivial. now f_equal.
Qed.
-(** Composition of injections **)
+Lemma inj_iff n m : 0<=n -> 0<=m -> (Z.to_N n = Z.to_N m <-> n = m).
+Proof.
+ intros. split. now apply inj. intros; now subst.
+Qed.
+
+(** [Z.to_N], basic equations *)
+
+Lemma inj_0 : Z.to_N 0 = 0%N.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma inj_pos n : Z.to_N (Zpos n) = Npos n.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma inj_neg n : Z.to_N (Zneg n) = 0%N.
+Proof.
+ reflexivity.
+Qed.
+
+(** [Z.to_N] and operations *)
+
+Lemma inj_add n m : 0<=n -> 0<=m -> Z.to_N (n+m) = (Z.to_N n + Z.to_N m)%N.
+Proof.
+ destruct n, m; trivial; (now destruct 1) || (now destruct 2).
+Qed.
+
+Lemma inj_mul n m : 0<=n -> 0<=m -> Z.to_N (n*m) = (Z.to_N n * Z.to_N m)%N.
+Proof.
+ destruct n, m; trivial; (now destruct 1) || (now destruct 2).
+Qed.
+
+Lemma inj_succ n : 0<=n -> Z.to_N (Z.succ n) = N.succ (Z.to_N n).
+Proof.
+ unfold Z.succ. intros. rewrite inj_add by easy. apply N.add_1_r.
+Qed.
+
+Lemma inj_sub n m : 0<=m -> Z.to_N (n - m) = (Z.to_N n - Z.to_N m)%N.
+Proof.
+ destruct n as [|n|n], m as [|m|m]; trivial; try (now destruct 1).
+ intros _. simpl.
+ rewrite Z.pos_sub_spec, Pos.compare_sub_mask. unfold Pos.sub.
+ now destruct (Pos.sub_mask n m).
+Qed.
+
+Lemma inj_pred n : Z.to_N (Z.pred n) = N.pred (Z.to_N n).
+Proof.
+ unfold Z.pred. rewrite <- N.sub_1_r. now apply (inj_sub n 1).
+Qed.
+
+Lemma inj_compare n m : 0<=n -> 0<=m ->
+ (Z.to_N n ?= Z.to_N m)%N = (n ?= m).
+Proof.
+ intros Hn Hm. now rewrite <- N2Z.inj_compare, !id.
+Qed.
+
+Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.to_N n <= Z.to_N m)%N).
+Proof.
+ intros Hn Hm. unfold Z.le, N.le. now rewrite inj_compare.
+Qed.
+
+Lemma inj_lt n m : 0<=n -> 0<=m -> (n<m <-> (Z.to_N n < Z.to_N m)%N).
+Proof.
+ intros Hn Hm. unfold Z.lt, N.lt. now rewrite inj_compare.
+Qed.
+
+Lemma inj_min n m : Z.to_N (Z.min n m) = N.min (Z.to_N n) (Z.to_N m).
+Proof.
+ destruct n, m; simpl; trivial; unfold Z.min, N.min; simpl;
+ now case Pos.compare.
+Qed.
+
+Lemma inj_max n m : Z.to_N (Z.max n m) = N.max (Z.to_N n) (Z.to_N m).
+Proof.
+ destruct n, m; simpl; trivial; unfold Z.max, N.max; simpl.
+ case Pos.compare_spec; intros; subst; trivial.
+ now case Pos.compare.
+Qed.
+
+Lemma inj_div n m : 0<=n -> 0<=m -> Z.to_N (n/m) = (Z.to_N n / Z.to_N m)%N.
+Proof.
+ destruct n, m; trivial; intros Hn Hm;
+ (now destruct Hn) || (now destruct Hm) || clear.
+ simpl. rewrite <- (N2Z.id (_ / _)). f_equal. now rewrite N2Z.inj_div.
+Qed.
+
+Lemma inj_mod n m : 0<=n -> 0<m ->
+ Z.to_N (n mod m) = ((Z.to_N n) mod (Z.to_N m))%N.
+Proof.
+ destruct n, m; trivial; intros Hn Hm;
+ (now destruct Hn) || (now destruct Hm) || clear.
+ simpl. rewrite <- (N2Z.id (_ mod _)). f_equal. now rewrite N2Z.inj_mod.
+Qed.
-Theorem Zpos_eq_Z_of_nat_o_nat_of_P :
- forall p:positive, Zpos p = Z_of_nat (nat_of_P p).
+Lemma inj_quot n m : 0<=n -> 0<=m -> Z.to_N (n÷m) = (Z.to_N n / Z.to_N m)%N.
Proof.
- intros x; elim x; simpl in |- *; auto.
- intros p H; rewrite ZL6.
- apply f_equal with (f := Zpos).
- apply nat_of_P_inj.
- rewrite nat_of_P_o_P_of_succ_nat_eq_succ; unfold nat_of_P in |- *;
- simpl in |- *.
- rewrite ZL6; auto.
- intros p H; unfold nat_of_P in |- *; simpl in |- *.
- rewrite ZL6; simpl in |- *.
- rewrite inj_plus; repeat rewrite <- H.
- rewrite Zpos_xO; simpl in |- *; rewrite Pplus_diag; reflexivity.
+ destruct m.
+ - now destruct n.
+ - intros. now rewrite Z.quot_div_nonneg, inj_div.
+ - now destruct 2.
Qed.
-(** Misc *)
+Lemma inj_rem n m :0<=n -> 0<=m ->
+ Z.to_N (Z.rem n m) = ((Z.to_N n) mod (Z.to_N m))%N.
+Proof.
+ destruct m.
+ - now destruct n.
+ - intros. now rewrite Z.rem_mod_nonneg, inj_mod.
+ - now destruct 2.
+Qed.
+
+Lemma inj_div2 n : Z.to_N (Z.div2 n) = N.div2 (Z.to_N n).
+Proof.
+ destruct n as [|p|p]; trivial. now destruct p.
+Qed.
+
+Lemma inj_quot2 n : Z.to_N (Z.quot2 n) = N.div2 (Z.to_N n).
+Proof.
+ destruct n as [|p|p]; trivial; now destruct p.
+Qed.
+
+Lemma inj_pow n m : 0<=n -> 0<=m -> Z.to_N (n^m) = ((Z.to_N n)^(Z.to_N m))%N.
+Proof.
+ destruct m.
+ - trivial.
+ - intros. now rewrite <- (N2Z.id (_ ^ _)), N2Z.inj_pow, id.
+ - now destruct 2.
+Qed.
+
+End Z2N.
+
+Module Zabs2N.
+
+(** Results about [Z.abs_N], converting absolute values of [Z] integers
+ to [N]. *)
+
+Lemma abs_N_spec n : Z.abs_N n = Z.to_N (Z.abs n).
+Proof.
+ now destruct n.
+Qed.
+
+Lemma abs_N_nonneg n : 0<=n -> Z.abs_N n = Z.to_N n.
+Proof.
+ destruct n; trivial; now destruct 1.
+Qed.
+
+Lemma id_abs n : Z.of_N (Z.abs_N n) = Z.abs n.
+Proof.
+ now destruct n.
+Qed.
+
+Lemma id n : Z.abs_N (Z.of_N n) = n.
+Proof.
+ now destruct n.
+Qed.
+
+(** [Z.abs_N], basic equations *)
+
+Lemma inj_0 : Z.abs_N 0 = 0%N.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma inj_pos p : Z.abs_N (Zpos p) = Npos p.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma inj_neg p : Z.abs_N (Zneg p) = Npos p.
+Proof.
+ reflexivity.
+Qed.
+
+(** [Z.abs_N] and usual operations, with non-negative integers *)
+
+Lemma inj_opp n : Z.abs_N (-n) = Z.abs_N n.
+Proof.
+ now destruct n.
+Qed.
+
+Lemma inj_succ n : 0<=n -> Z.abs_N (Z.succ n) = N.succ (Z.abs_N n).
+Proof.
+ intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_succ.
+ now apply Z.le_le_succ_r.
+Qed.
+
+Lemma inj_add n m : 0<=n -> 0<=m -> Z.abs_N (n+m) = (Z.abs_N n + Z.abs_N m)%N.
+Proof.
+ intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_add.
+ now apply Z.add_nonneg_nonneg.
+Qed.
+
+Lemma inj_mul n m : Z.abs_N (n*m) = (Z.abs_N n * Z.abs_N m)%N.
+Proof.
+ now destruct n, m.
+Qed.
+
+Lemma inj_sub n m : 0<=m<=n -> Z.abs_N (n-m) = (Z.abs_N n - Z.abs_N m)%N.
+Proof.
+ intros (Hn,H). rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_sub.
+ Z.order.
+ now apply Z.le_0_sub.
+Qed.
+
+Lemma inj_pred n : 0<n -> Z.abs_N (Z.pred n) = N.pred (Z.abs_N n).
+Proof.
+ intros. rewrite !abs_N_nonneg. now apply Z2N.inj_pred.
+ Z.order.
+ apply Z.lt_succ_r. now rewrite Z.succ_pred.
+Qed.
+
+Lemma inj_compare n m : 0<=n -> 0<=m ->
+ (Z.abs_N n ?= Z.abs_N m)%N = (n ?= m).
+Proof.
+ intros. rewrite !abs_N_nonneg by trivial. now apply Z2N.inj_compare.
+Qed.
+
+Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.abs_N n <= Z.abs_N m)%N).
+Proof.
+ intros Hn Hm. unfold Z.le, N.le. now rewrite inj_compare.
+Qed.
+
+Lemma inj_lt n m : 0<=n -> 0<=m -> (n<m <-> (Z.abs_N n < Z.abs_N m)%N).
+Proof.
+ intros Hn Hm. unfold Z.lt, N.lt. now rewrite inj_compare.
+Qed.
+
+Lemma inj_min n m : 0<=n -> 0<=m ->
+ Z.abs_N (Z.min n m) = N.min (Z.abs_N n) (Z.abs_N m).
+Proof.
+ intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_min.
+ now apply Z.min_glb.
+Qed.
+
+Lemma inj_max n m : 0<=n -> 0<=m ->
+ Z.abs_N (Z.max n m) = N.max (Z.abs_N n) (Z.abs_N m).
+Proof.
+ intros. rewrite !abs_N_nonneg; trivial. now apply Z2N.inj_max.
+ transitivity n; trivial. apply Z.le_max_l.
+Qed.
+
+Lemma inj_quot n m : Z.abs_N (n÷m) = ((Z.abs_N n) / (Z.abs_N m))%N.
+Proof.
+ assert (forall p q, Z.abs_N (Zpos p ÷ Zpos q) = (Npos p / Npos q)%N).
+ intros. rewrite abs_N_nonneg. now apply Z2N.inj_quot. now apply Z.quot_pos.
+ destruct n, m; trivial; simpl.
+ - trivial.
+ - now rewrite <- Z.opp_Zpos, Z.quot_opp_r, inj_opp.
+ - now rewrite <- Z.opp_Zpos, Z.quot_opp_l, inj_opp.
+ - now rewrite <- 2 Z.opp_Zpos, Z.quot_opp_opp.
+Qed.
+
+Lemma inj_rem n m : Z.abs_N (Z.rem n m) = ((Z.abs_N n) mod (Z.abs_N m))%N.
+Proof.
+ assert
+ (forall p q, Z.abs_N (Z.rem (Zpos p) (Zpos q)) = ((Npos p) mod (Npos q))%N).
+ intros. rewrite abs_N_nonneg. now apply Z2N.inj_rem. now apply Z.rem_nonneg.
+ destruct n, m; trivial; simpl.
+ - trivial.
+ - now rewrite <- Z.opp_Zpos, Z.rem_opp_r.
+ - now rewrite <- Z.opp_Zpos, Z.rem_opp_l, inj_opp.
+ - now rewrite <- 2 Z.opp_Zpos, Z.rem_opp_opp, inj_opp.
+Qed.
+
+Lemma inj_pow n m : 0<=m -> Z.abs_N (n^m) = ((Z.abs_N n)^(Z.abs_N m))%N.
+Proof.
+ intros Hm. rewrite abs_N_spec, Z.abs_pow, Z2N.inj_pow, <- abs_N_spec; trivial.
+ f_equal. symmetry; now apply abs_N_nonneg. apply Z.abs_nonneg.
+Qed.
+
+(** [Z.abs_N] and usual operations, statements with [Z.abs] *)
+
+Lemma inj_succ_abs n : Z.abs_N (Z.succ (Z.abs n)) = N.succ (Z.abs_N n).
+Proof.
+ destruct n; simpl; trivial; now rewrite Pos.add_1_r.
+Qed.
+
+Lemma inj_add_abs n m :
+ Z.abs_N (Z.abs n + Z.abs m) = (Z.abs_N n + Z.abs_N m)%N.
+Proof.
+ now destruct n, m.
+Qed.
+
+Lemma inj_mul_abs n m :
+ Z.abs_N (Z.abs n * Z.abs m) = (Z.abs_N n * Z.abs_N m)%N.
+Proof.
+ now destruct n, m.
+Qed.
+
+End Zabs2N.
+
+
+(** * Conversions between [Z] and [nat] *)
+
+Module Nat2Z.
+
+(** [Z.of_nat], basic equations *)
-Theorem intro_Z :
- forall n:nat, exists y : Z, Z_of_nat n = y /\ 0 <= y * 1 + 0.
+Lemma inj_0 : Z.of_nat 0 = 0.
Proof.
- intros x; exists (Z_of_nat x); split;
- [ trivial with arith
- | rewrite Zmult_comm; rewrite Zmult_1_l; rewrite Zplus_0_r;
- unfold Zle in |- *; elim x; intros; simpl in |- *;
- discriminate ].
+ reflexivity.
Qed.
-Lemma Zpos_P_of_succ_nat : forall n:nat,
- Zpos (P_of_succ_nat n) = Zsucc (Z_of_nat n).
+Lemma inj_succ n : Z.of_nat (S n) = Z.succ (Z.of_nat n).
+Proof.
+ destruct n. trivial. simpl. symmetry. apply Z.succ_Zpos.
+Qed.
+
+(** [Z.of_N] produce non-negative integers *)
+
+Lemma is_nonneg n : 0 <= Z.of_nat n.
+Proof.
+ now induction n.
+Qed.
+
+(** [Z.of_nat] is a bijection between [nat] and non-negative [Z],
+ with [Z.to_nat] (or [Z.abs_nat]) as reciprocal.
+ See [Z2Nat.id] below for the dual equation. *)
+
+Lemma id n : Z.to_nat (Z.of_nat n) = n.
+Proof.
+ now rewrite <- nat_N_Z, <- Z_N_nat, N2Z.id, Nat2N.id.
+Qed.
+
+(** [Z.of_nat] is hence injective *)
+
+Lemma inj n m : Z.of_nat n = Z.of_nat m -> n = m.
+Proof.
+ intros H. now rewrite <- (id n), <- (id m), H.
+Qed.
+
+Lemma inj_iff n m : Z.of_nat n = Z.of_nat m <-> n = m.
+Proof.
+ split. apply inj. intros; now f_equal.
+Qed.
+
+(** [Z.of_nat] and usual operations *)
+
+Lemma inj_compare n m : (Z.of_nat n ?= Z.of_nat m) = nat_compare n m.
+Proof.
+ now rewrite <-!nat_N_Z, N2Z.inj_compare, <- Nat2N.inj_compare.
+Qed.
+
+Lemma inj_le n m : (n<=m)%nat <-> Z.of_nat n <= Z.of_nat m.
+Proof.
+ unfold Z.le. now rewrite inj_compare, nat_compare_le.
+Qed.
+
+Lemma inj_lt n m : (n<m)%nat <-> Z.of_nat n < Z.of_nat m.
+Proof.
+ unfold Z.lt. now rewrite inj_compare, nat_compare_lt.
+Qed.
+
+Lemma inj_ge n m : (n>=m)%nat <-> Z.of_nat n >= Z.of_nat m.
+Proof.
+ unfold Z.ge. now rewrite inj_compare, nat_compare_ge.
+Qed.
+
+Lemma inj_gt n m : (n>m)%nat <-> Z.of_nat n > Z.of_nat m.
+Proof.
+ unfold Z.gt. now rewrite inj_compare, nat_compare_gt.
+Qed.
+
+Lemma inj_abs_nat z : Z.of_nat (Z.abs_nat z) = Z.abs z.
+Proof.
+ destruct z; simpl; trivial;
+ destruct (Pos2Nat.is_succ p) as (n,H); rewrite H; simpl; f_equal;
+ now apply SuccNat2Pos.inv.
+Qed.
+
+Lemma inj_add n m : Z.of_nat (n+m) = Z.of_nat n + Z.of_nat m.
+Proof.
+ now rewrite <- !nat_N_Z, Nat2N.inj_add, N2Z.inj_add.
+Qed.
+
+Lemma inj_mul n m : Z.of_nat (n*m) = Z.of_nat n * Z.of_nat m.
+Proof.
+ now rewrite <- !nat_N_Z, Nat2N.inj_mul, N2Z.inj_mul.
+Qed.
+
+Lemma inj_sub_max n m : Z.of_nat (n-m) = Z.max 0 (Z.of_nat n - Z.of_nat m).
+Proof.
+ now rewrite <- !nat_N_Z, Nat2N.inj_sub, N2Z.inj_sub_max.
+Qed.
+
+Lemma inj_sub n m : (m<=n)%nat -> Z.of_nat (n-m) = Z.of_nat n - Z.of_nat m.
+Proof.
+ rewrite nat_compare_le, Nat2N.inj_compare. intros.
+ now rewrite <- !nat_N_Z, Nat2N.inj_sub, N2Z.inj_sub.
+Qed.
+
+Lemma inj_pred_max n : Z.of_nat (pred n) = Z.max 0 (Z.pred (Z.of_nat n)).
+Proof.
+ now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred_max.
+Qed.
+
+Lemma inj_pred n : (0<n)%nat -> Z.of_nat (pred n) = Z.pred (Z.of_nat n).
+Proof.
+ rewrite nat_compare_lt, Nat2N.inj_compare. intros.
+ now rewrite <- !nat_N_Z, Nat2N.inj_pred, N2Z.inj_pred.
+Qed.
+
+Lemma inj_min n m : Z.of_nat (min n m) = Z.min (Z.of_nat n) (Z.of_nat m).
+Proof.
+ now rewrite <- !nat_N_Z, Nat2N.inj_min, N2Z.inj_min.
+Qed.
+
+Lemma inj_max n m : Z.of_nat (max n m) = Z.max (Z.of_nat n) (Z.of_nat m).
+Proof.
+ now rewrite <- !nat_N_Z, Nat2N.inj_max, N2Z.inj_max.
+Qed.
+
+End Nat2Z.
+
+Module Z2Nat.
+
+(** [Z.to_nat] is a bijection between non-negative [Z] and [nat],
+ with [Pos.of_nat] as reciprocal.
+ See [nat2Z.id] above for the dual equation. *)
+
+Lemma id n : 0<=n -> Z.of_nat (Z.to_nat n) = n.
+Proof.
+ intros. now rewrite <- Z_N_nat, <- nat_N_Z, N2Nat.id, Z2N.id.
+Qed.
+
+(** [Z.to_nat] is hence injective for non-negative integers. *)
+
+Lemma inj n m : 0<=n -> 0<=m -> Z.to_nat n = Z.to_nat m -> n = m.
+Proof.
+ intros. rewrite <- (id n), <- (id m) by trivial. now f_equal.
+Qed.
+
+Lemma inj_iff n m : 0<=n -> 0<=m -> (Z.to_nat n = Z.to_nat m <-> n = m).
+Proof.
+ intros. split. now apply inj. intros; now subst.
+Qed.
+
+(** [Z.to_nat], basic equations *)
+
+Lemma inj_0 : Z.to_nat 0 = O.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma inj_pos n : Z.to_nat (Zpos n) = Pos.to_nat n.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma inj_neg n : Z.to_nat (Zneg n) = O.
+Proof.
+ reflexivity.
+Qed.
+
+(** [Z.to_nat] and operations *)
+
+Lemma inj_add n m : 0<=n -> 0<=m ->
+ Z.to_nat (n+m) = (Z.to_nat n + Z.to_nat m)%nat.
+Proof.
+ intros. now rewrite <- !Z_N_nat, Z2N.inj_add, N2Nat.inj_add.
+Qed.
+
+Lemma inj_mul n m : 0<=n -> 0<=m ->
+ Z.to_nat (n*m) = (Z.to_nat n * Z.to_nat m)%nat.
+Proof.
+ intros. now rewrite <- !Z_N_nat, Z2N.inj_mul, N2Nat.inj_mul.
+Qed.
+
+Lemma inj_succ n : 0<=n -> Z.to_nat (Z.succ n) = S (Z.to_nat n).
+Proof.
+ intros. now rewrite <- !Z_N_nat, Z2N.inj_succ, N2Nat.inj_succ.
+Qed.
+
+Lemma inj_sub n m : 0<=m -> Z.to_nat (n - m) = (Z.to_nat n - Z.to_nat m)%nat.
+Proof.
+ intros. now rewrite <- !Z_N_nat, Z2N.inj_sub, N2Nat.inj_sub.
+Qed.
+
+Lemma inj_pred n : Z.to_nat (Z.pred n) = pred (Z.to_nat n).
+Proof.
+ now rewrite <- !Z_N_nat, Z2N.inj_pred, N2Nat.inj_pred.
+Qed.
+
+Lemma inj_compare n m : 0<=n -> 0<=m ->
+ nat_compare (Z.to_nat n) (Z.to_nat m) = (n ?= m).
+Proof.
+ intros Hn Hm. now rewrite <- Nat2Z.inj_compare, !id.
+Qed.
+
+Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.to_nat n <= Z.to_nat m)%nat).
+Proof.
+ intros Hn Hm. unfold Z.le. now rewrite nat_compare_le, inj_compare.
+Qed.
+
+Lemma inj_lt n m : 0<=n -> 0<=m -> (n<m <-> (Z.to_nat n < Z.to_nat m)%nat).
+Proof.
+ intros Hn Hm. unfold Z.lt. now rewrite nat_compare_lt, inj_compare.
+Qed.
+
+Lemma inj_min n m : Z.to_nat (Z.min n m) = min (Z.to_nat n) (Z.to_nat m).
+Proof.
+ now rewrite <- !Z_N_nat, Z2N.inj_min, N2Nat.inj_min.
+Qed.
+
+Lemma inj_max n m : Z.to_nat (Z.max n m) = max (Z.to_nat n) (Z.to_nat m).
+Proof.
+ now rewrite <- !Z_N_nat, Z2N.inj_max, N2Nat.inj_max.
+Qed.
+
+End Z2Nat.
+
+Module Zabs2Nat.
+
+(** Results about [Z.abs_nat], converting absolute values of [Z] integers
+ to [nat]. *)
+
+Lemma abs_nat_spec n : Z.abs_nat n = Z.to_nat (Z.abs n).
+Proof.
+ now destruct n.
+Qed.
+
+Lemma abs_nat_nonneg n : 0<=n -> Z.abs_nat n = Z.to_nat n.
+Proof.
+ destruct n; trivial; now destruct 1.
+Qed.
+
+Lemma id_abs n : Z.of_nat (Z.abs_nat n) = Z.abs n.
+Proof.
+ rewrite <-Zabs_N_nat, N_nat_Z. apply Zabs2N.id_abs.
+Qed.
+
+Lemma id n : Z.abs_nat (Z.of_nat n) = n.
+Proof.
+ now rewrite <-Zabs_N_nat, <-nat_N_Z, Zabs2N.id, Nat2N.id.
+Qed.
+
+(** [Z.abs_nat], basic equations *)
+
+Lemma inj_0 : Z.abs_nat 0 = 0%nat.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma inj_pos p : Z.abs_nat (Zpos p) = Pos.to_nat p.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma inj_neg p : Z.abs_nat (Zneg p) = Pos.to_nat p.
+Proof.
+ reflexivity.
+Qed.
+
+(** [Z.abs_nat] and usual operations, with non-negative integers *)
+
+Lemma inj_succ n : 0<=n -> Z.abs_nat (Z.succ n) = S (Z.abs_nat n).
+Proof.
+ intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_succ, N2Nat.inj_succ.
+Qed.
+
+Lemma inj_add n m : 0<=n -> 0<=m ->
+ Z.abs_nat (n+m) = (Z.abs_nat n + Z.abs_nat m)%nat.
+Proof.
+ intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_add, N2Nat.inj_add.
+Qed.
+
+Lemma inj_mul n m : Z.abs_nat (n*m) = (Z.abs_nat n * Z.abs_nat m)%nat.
+Proof.
+ destruct n, m; simpl; trivial using Pos2Nat.inj_mul.
+Qed.
+
+Lemma inj_sub n m : 0<=m<=n ->
+ Z.abs_nat (n-m) = (Z.abs_nat n - Z.abs_nat m)%nat.
+Proof.
+ intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_sub, N2Nat.inj_sub.
+Qed.
+
+Lemma inj_pred n : 0<n -> Z.abs_nat (Z.pred n) = pred (Z.abs_nat n).
+Proof.
+ intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_pred, N2Nat.inj_pred.
+Qed.
+
+Lemma inj_compare n m : 0<=n -> 0<=m ->
+ nat_compare (Z.abs_nat n) (Z.abs_nat m) = (n ?= m).
+Proof.
+ intros. now rewrite <- !Zabs_N_nat, <- N2Nat.inj_compare, Zabs2N.inj_compare.
+Qed.
+
+Lemma inj_le n m : 0<=n -> 0<=m -> (n<=m <-> (Z.abs_nat n <= Z.abs_nat m)%nat).
+Proof.
+ intros Hn Hm. unfold Z.le. now rewrite nat_compare_le, inj_compare.
+Qed.
+
+Lemma inj_lt n m : 0<=n -> 0<=m -> (n<m <-> (Z.abs_nat n < Z.abs_nat m)%nat).
+Proof.
+ intros Hn Hm. unfold Z.lt. now rewrite nat_compare_lt, inj_compare.
+Qed.
+
+Lemma inj_min n m : 0<=n -> 0<=m ->
+ Z.abs_nat (Z.min n m) = min (Z.abs_nat n) (Z.abs_nat m).
+Proof.
+ intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_min, N2Nat.inj_min.
+Qed.
+
+Lemma inj_max n m : 0<=n -> 0<=m ->
+ Z.abs_nat (Z.max n m) = max (Z.abs_nat n) (Z.abs_nat m).
+Proof.
+ intros. now rewrite <- !Zabs_N_nat, Zabs2N.inj_max, N2Nat.inj_max.
+Qed.
+
+(** [Z.abs_nat] and usual operations, statements with [Z.abs] *)
+
+Lemma inj_succ_abs n : Z.abs_nat (Z.succ (Z.abs n)) = S (Z.abs_nat n).
+Proof.
+ now rewrite <- !Zabs_N_nat, Zabs2N.inj_succ_abs, N2Nat.inj_succ.
+Qed.
+
+Lemma inj_add_abs n m :
+ Z.abs_nat (Z.abs n + Z.abs m) = (Z.abs_nat n + Z.abs_nat m)%nat.
+Proof.
+ now rewrite <- !Zabs_N_nat, Zabs2N.inj_add_abs, N2Nat.inj_add.
+Qed.
+
+Lemma inj_mul_abs n m :
+ Z.abs_nat (Z.abs n * Z.abs m) = (Z.abs_nat n * Z.abs_nat m)%nat.
+Proof.
+ now rewrite <- !Zabs_N_nat, Zabs2N.inj_mul_abs, N2Nat.inj_mul.
+Qed.
+
+End Zabs2Nat.
+
+
+(** Compatibility *)
+
+Definition neq (x y:nat) := x <> y.
+
+Lemma inj_neq n m : neq n m -> Zne (Z_of_nat n) (Z_of_nat m).
+Proof. intros H H'. now apply H, Nat2Z.inj. Qed.
+
+Lemma Zpos_P_of_succ_nat n : Zpos (P_of_succ_nat n) = Zsucc (Z_of_nat n).
+Proof (Nat2Z.inj_succ n).
+
+(** For these one, used in omega, a Definition is necessary *)
+
+Definition inj_eq := (f_equal Z.of_nat).
+Definition inj_le n m := proj1 (Nat2Z.inj_le n m).
+Definition inj_lt n m := proj1 (Nat2Z.inj_lt n m).
+Definition inj_ge n m := proj1 (Nat2Z.inj_ge n m).
+Definition inj_gt n m := proj1 (Nat2Z.inj_gt n m).
+
+(** For the others, a Notation is fine *)
+
+Notation inj_0 := Nat2Z.inj_0 (only parsing).
+Notation inj_S := Nat2Z.inj_succ (only parsing).
+Notation inj_compare := Nat2Z.inj_compare (only parsing).
+Notation inj_eq_rev := Nat2Z.inj (only parsing).
+Notation inj_eq_iff := (fun n m => iff_sym (Nat2Z.inj_iff n m)) (only parsing).
+Notation inj_le_iff := Nat2Z.inj_le (only parsing).
+Notation inj_lt_iff := Nat2Z.inj_lt (only parsing).
+Notation inj_ge_iff := Nat2Z.inj_ge (only parsing).
+Notation inj_gt_iff := Nat2Z.inj_gt (only parsing).
+Notation inj_le_rev := (fun n m => proj2 (Nat2Z.inj_le n m)) (only parsing).
+Notation inj_lt_rev := (fun n m => proj2 (Nat2Z.inj_lt n m)) (only parsing).
+Notation inj_ge_rev := (fun n m => proj2 (Nat2Z.inj_ge n m)) (only parsing).
+Notation inj_gt_rev := (fun n m => proj2 (Nat2Z.inj_gt n m)) (only parsing).
+Notation inj_plus := Nat2Z.inj_add (only parsing).
+Notation inj_mult := Nat2Z.inj_mul (only parsing).
+Notation inj_minus1 := Nat2Z.inj_sub (only parsing).
+Notation inj_minus := Nat2Z.inj_sub_max (only parsing).
+Notation inj_min := Nat2Z.inj_min (only parsing).
+Notation inj_max := Nat2Z.inj_max (only parsing).
+
+Notation Z_of_nat_of_P := positive_nat_Z (only parsing).
+Notation Zpos_eq_Z_of_nat_o_nat_of_P :=
+ (fun p => sym_eq (positive_nat_Z p)) (only parsing).
+
+Notation Z_of_nat_of_N := N_nat_Z (only parsing).
+Notation Z_of_N_of_nat := nat_N_Z (only parsing).
+
+Notation Z_of_N_eq := (f_equal Z.of_N) (only parsing).
+Notation Z_of_N_eq_rev := N2Z.inj (only parsing).
+Notation Z_of_N_eq_iff := (fun n m => iff_sym (N2Z.inj_iff n m)) (only parsing).
+Notation Z_of_N_compare := N2Z.inj_compare (only parsing).
+Notation Z_of_N_le_iff := N2Z.inj_le (only parsing).
+Notation Z_of_N_lt_iff := N2Z.inj_lt (only parsing).
+Notation Z_of_N_ge_iff := N2Z.inj_ge (only parsing).
+Notation Z_of_N_gt_iff := N2Z.inj_gt (only parsing).
+Notation Z_of_N_le := (fun n m => proj1 (N2Z.inj_le n m)) (only parsing).
+Notation Z_of_N_lt := (fun n m => proj1 (N2Z.inj_lt n m)) (only parsing).
+Notation Z_of_N_ge := (fun n m => proj1 (N2Z.inj_ge n m)) (only parsing).
+Notation Z_of_N_gt := (fun n m => proj1 (N2Z.inj_gt n m)) (only parsing).
+Notation Z_of_N_le_rev := (fun n m => proj2 (N2Z.inj_le n m)) (only parsing).
+Notation Z_of_N_lt_rev := (fun n m => proj2 (N2Z.inj_lt n m)) (only parsing).
+Notation Z_of_N_ge_rev := (fun n m => proj2 (N2Z.inj_ge n m)) (only parsing).
+Notation Z_of_N_gt_rev := (fun n m => proj2 (N2Z.inj_gt n m)) (only parsing).
+Notation Z_of_N_pos := N2Z.inj_pos (only parsing).
+Notation Z_of_N_abs := N2Z.inj_abs_N (only parsing).
+Notation Z_of_N_le_0 := N2Z.is_nonneg (only parsing).
+Notation Z_of_N_plus := N2Z.inj_add (only parsing).
+Notation Z_of_N_mult := N2Z.inj_mul (only parsing).
+Notation Z_of_N_minus := N2Z.inj_sub_max (only parsing).
+Notation Z_of_N_succ := N2Z.inj_succ (only parsing).
+Notation Z_of_N_min := N2Z.inj_min (only parsing).
+Notation Z_of_N_max := N2Z.inj_max (only parsing).
+Notation Zabs_of_N := Zabs2N.id (only parsing).
+Notation Zabs_N_succ_abs := Zabs2N.inj_succ_abs (only parsing).
+Notation Zabs_N_succ := Zabs2N.inj_succ (only parsing).
+Notation Zabs_N_plus_abs := Zabs2N.inj_add_abs (only parsing).
+Notation Zabs_N_plus := Zabs2N.inj_add (only parsing).
+Notation Zabs_N_mult_abs := Zabs2N.inj_mul_abs (only parsing).
+Notation Zabs_N_mult := Zabs2N.inj_mul (only parsing).
+
+Theorem inj_minus2 : forall n m:nat, (m > n)%nat -> Z_of_nat (n - m) = 0.
Proof.
- intros.
- unfold Z_of_nat.
- destruct n.
- simpl; auto.
- simpl (P_of_succ_nat (S n)).
- apply Zpos_succ_morphism.
+ intros. rewrite not_le_minus_0; auto with arith.
Qed.