summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zmisc.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zmisc.v')
-rw-r--r--theories/ZArith/Zmisc.v88
1 files changed, 44 insertions, 44 deletions
diff --git a/theories/ZArith/Zmisc.v b/theories/ZArith/Zmisc.v
index 8246e324..d01cada6 100644
--- a/theories/ZArith/Zmisc.v
+++ b/theories/ZArith/Zmisc.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zmisc.v 5920 2004-07-16 20:01:26Z herbelin $ i*)
+(*i $Id: Zmisc.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import BinInt.
Require Import Zcompare.
@@ -20,78 +20,78 @@ Open Local Scope Z_scope.
(** [n]th iteration of the function [f] *)
Fixpoint iter_nat (n:nat) (A:Set) (f:A -> A) (x:A) {struct n} : A :=
match n with
- | O => x
- | S n' => f (iter_nat n' A f x)
+ | O => x
+ | S n' => f (iter_nat n' A f x)
end.
Fixpoint iter_pos (n:positive) (A:Set) (f:A -> A) (x:A) {struct n} : A :=
match n with
- | xH => f x
- | xO n' => iter_pos n' A f (iter_pos n' A f x)
- | xI n' => f (iter_pos n' A f (iter_pos n' A f x))
+ | xH => f x
+ | xO n' => iter_pos n' A f (iter_pos n' A f x)
+ | xI n' => f (iter_pos n' A f (iter_pos n' A f x))
end.
Definition iter (n:Z) (A:Set) (f:A -> A) (x:A) :=
match n with
- | Z0 => x
- | Zpos p => iter_pos p A f x
- | Zneg p => x
+ | Z0 => x
+ | Zpos p => iter_pos p A f x
+ | Zneg p => x
end.
Theorem iter_nat_plus :
- forall (n m:nat) (A:Set) (f:A -> A) (x:A),
- iter_nat (n + m) A f x = iter_nat n A f (iter_nat m A f x).
+ forall (n m:nat) (A:Set) (f:A -> A) (x:A),
+ iter_nat (n + m) A f x = iter_nat n A f (iter_nat m A f x).
Proof.
-simple induction n;
- [ simpl in |- *; auto with arith
- | intros; simpl in |- *; apply f_equal with (f := f); apply H ].
+ simple induction n;
+ [ simpl in |- *; auto with arith
+ | intros; simpl in |- *; apply f_equal with (f := f); apply H ].
Qed.
Theorem iter_nat_of_P :
- forall (p:positive) (A:Set) (f:A -> A) (x:A),
- iter_pos p A f x = iter_nat (nat_of_P p) A f x.
+ forall (p:positive) (A:Set) (f:A -> A) (x:A),
+ iter_pos p A f x = iter_nat (nat_of_P p) A f x.
Proof.
-intro n; induction n as [p H| p H| ];
- [ intros; simpl in |- *; rewrite (H A f x);
- rewrite (H A f (iter_nat (nat_of_P p) A f x));
- rewrite (ZL6 p); symmetry in |- *; apply f_equal with (f := f);
- apply iter_nat_plus
- | intros; unfold nat_of_P in |- *; simpl in |- *; rewrite (H A f x);
- rewrite (H A f (iter_nat (nat_of_P p) A f x));
- rewrite (ZL6 p); symmetry in |- *; apply iter_nat_plus
- | simpl in |- *; auto with arith ].
+ intro n; induction n as [p H| p H| ];
+ [ intros; simpl in |- *; rewrite (H A f x);
+ rewrite (H A f (iter_nat (nat_of_P p) A f x));
+ rewrite (ZL6 p); symmetry in |- *; apply f_equal with (f := f);
+ apply iter_nat_plus
+ | intros; unfold nat_of_P in |- *; simpl in |- *; rewrite (H A f x);
+ rewrite (H A f (iter_nat (nat_of_P p) A f x));
+ rewrite (ZL6 p); symmetry in |- *; apply iter_nat_plus
+ | simpl in |- *; auto with arith ].
Qed.
Theorem iter_pos_plus :
- forall (p q:positive) (A:Set) (f:A -> A) (x:A),
- iter_pos (p + q) A f x = iter_pos p A f (iter_pos q A f x).
+ forall (p q:positive) (A:Set) (f:A -> A) (x:A),
+ iter_pos (p + q) A f x = iter_pos p A f (iter_pos q A f x).
Proof.
-intros n m; intros.
-rewrite (iter_nat_of_P m A f x).
-rewrite (iter_nat_of_P n A f (iter_nat (nat_of_P m) A f x)).
-rewrite (iter_nat_of_P (n + m) A f x).
-rewrite (nat_of_P_plus_morphism n m).
-apply iter_nat_plus.
+ intros n m; intros.
+ rewrite (iter_nat_of_P m A f x).
+ rewrite (iter_nat_of_P n A f (iter_nat (nat_of_P m) A f x)).
+ rewrite (iter_nat_of_P (n + m) A f x).
+ rewrite (nat_of_P_plus_morphism n m).
+ apply iter_nat_plus.
Qed.
(** Preservation of invariants : if [f : A->A] preserves the invariant [Inv],
then the iterates of [f] also preserve it. *)
Theorem iter_nat_invariant :
- forall (n:nat) (A:Set) (f:A -> A) (Inv:A -> Prop),
- (forall x:A, Inv x -> Inv (f x)) ->
- forall x:A, Inv x -> Inv (iter_nat n A f x).
+ forall (n:nat) (A:Set) (f:A -> A) (Inv:A -> Prop),
+ (forall x:A, Inv x -> Inv (f x)) ->
+ forall x:A, Inv x -> Inv (iter_nat n A f x).
Proof.
-simple induction n; intros;
- [ trivial with arith
- | simpl in |- *; apply H0 with (x := iter_nat n0 A f x); apply H;
- trivial with arith ].
+ simple induction n; intros;
+ [ trivial with arith
+ | simpl in |- *; apply H0 with (x := iter_nat n0 A f x); apply H;
+ trivial with arith ].
Qed.
Theorem iter_pos_invariant :
- forall (p:positive) (A:Set) (f:A -> A) (Inv:A -> Prop),
- (forall x:A, Inv x -> Inv (f x)) ->
- forall x:A, Inv x -> Inv (iter_pos p A f x).
+ forall (p:positive) (A:Set) (f:A -> A) (Inv:A -> Prop),
+ (forall x:A, Inv x -> Inv (f x)) ->
+ forall x:A, Inv x -> Inv (iter_pos p A f x).
Proof.
-intros; rewrite iter_nat_of_P; apply iter_nat_invariant; trivial with arith.
+ intros; rewrite iter_nat_of_P; apply iter_nat_invariant; trivial with arith.
Qed.