summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zminmax.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zminmax.v')
-rw-r--r--theories/ZArith/Zminmax.v50
1 files changed, 22 insertions, 28 deletions
diff --git a/theories/ZArith/Zminmax.v b/theories/ZArith/Zminmax.v
index ebe9318e..95668cf8 100644
--- a/theories/ZArith/Zminmax.v
+++ b/theories/ZArith/Zminmax.v
@@ -5,27 +5,27 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zminmax.v 8034 2006-02-12 22:08:04Z herbelin $ i*)
+(*i $Id: Zminmax.v 9245 2006-10-17 12:53:34Z notin $ i*)
Require Import Zmin Zmax.
Require Import BinInt Zorder.
Open Local Scope Z_scope.
-(** *** Lattice properties of min and max on Z *)
+(** Lattice properties of min and max on Z *)
(** Absorption *)
Lemma Zmin_max_absorption_r_r : forall n m, Zmax n (Zmin n m) = n.
Proof.
-intros; apply Zmin_case_strong; intro; apply Zmax_case_strong; intro;
- reflexivity || apply Zle_antisym; trivial.
+ intros; apply Zmin_case_strong; intro; apply Zmax_case_strong; intro;
+ reflexivity || apply Zle_antisym; trivial.
Qed.
Lemma Zmax_min_absorption_r_r : forall n m, Zmin n (Zmax n m) = n.
Proof.
-intros; apply Zmax_case_strong; intro; apply Zmin_case_strong; intro;
- reflexivity || apply Zle_antisym; trivial.
+ intros; apply Zmax_case_strong; intro; apply Zmin_case_strong; intro;
+ reflexivity || apply Zle_antisym; trivial.
Qed.
(** Distributivity *)
@@ -33,19 +33,19 @@ Qed.
Lemma Zmax_min_distr_r :
forall n m p, Zmax n (Zmin m p) = Zmin (Zmax n m) (Zmax n p).
Proof.
-intros.
-repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
- reflexivity ||
- apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
+ intros.
+ repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
+ reflexivity ||
+ apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.
Lemma Zmin_max_distr_r :
forall n m p, Zmin n (Zmax m p) = Zmax (Zmin n m) (Zmin n p).
Proof.
-intros.
-repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
- reflexivity ||
- apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
+ intros.
+ repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
+ reflexivity ||
+ apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.
(** Modularity *)
@@ -53,30 +53,24 @@ Qed.
Lemma Zmax_min_modular_r :
forall n m p, Zmax n (Zmin m (Zmax n p)) = Zmin (Zmax n m) (Zmax n p).
Proof.
-intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
- reflexivity ||
- apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
+ intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
+ reflexivity ||
+ apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.
Lemma Zmin_max_modular_r :
forall n m p, Zmin n (Zmax m (Zmin n p)) = Zmax (Zmin n m) (Zmin n p).
Proof.
-intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
- reflexivity ||
- apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
+ intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
+ reflexivity ||
+ apply Zle_antisym; (assumption || eapply Zle_trans; eassumption).
Qed.
(** Disassociativity *)
Lemma max_min_disassoc : forall n m p, Zmin n (Zmax m p) <= Zmax (Zmin n m) p.
Proof.
-intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
- apply Zle_refl || (assumption || eapply Zle_trans; eassumption).
+ intros; repeat apply Zmax_case_strong; repeat apply Zmin_case_strong; intros;
+ apply Zle_refl || (assumption || eapply Zle_trans; eassumption).
Qed.
-
-
-
-
-
-