summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zmax.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zmax.v')
-rw-r--r--theories/ZArith/Zmax.v178
1 files changed, 59 insertions, 119 deletions
diff --git a/theories/ZArith/Zmax.v b/theories/ZArith/Zmax.v
index 0d6fc94a..53c40ae7 100644
--- a/theories/ZArith/Zmax.v
+++ b/theories/ZArith/Zmax.v
@@ -5,162 +5,102 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zmax.v 10291 2007-11-06 02:18:53Z letouzey $ i*)
+(*i $Id$ i*)
-Require Import Arith_base.
-Require Import BinInt.
-Require Import Zcompare.
-Require Import Zorder.
+(** THIS FILE IS DEPRECATED. Use [Zminmax] instead. *)
+
+Require Export BinInt Zorder Zminmax.
Open Local Scope Z_scope.
-(******************************************)
-(** Maximum of two binary integer numbers *)
+(** [Zmax] is now [Zminmax.Zmax]. Code that do things like
+ [unfold Zmin.Zmin] will have to be adapted, and neither
+ a [Definition] or a [Notation] here can help much. *)
-Definition Zmax m n :=
- match m ?= n with
- | Eq | Gt => m
- | Lt => n
- end.
(** * Characterization of maximum on binary integer numbers *)
-Lemma Zmax_case : forall (n m:Z) (P:Z -> Type), P n -> P m -> P (Zmax n m).
-Proof.
- intros n m P H1 H2; unfold Zmax in |- *; case (n ?= m); auto with arith.
-Qed.
-
-Lemma Zmax_case_strong : forall (n m:Z) (P:Z -> Type),
- (m<=n -> P n) -> (n<=m -> P m) -> P (Zmax n m).
-Proof.
- intros n m P H1 H2; unfold Zmax, Zle, Zge in *.
- rewrite <- (Zcompare_antisym n m) in H1.
- destruct (n ?= m); (apply H1|| apply H2); discriminate.
-Qed.
+Definition Zmax_case := Z.max_case.
+Definition Zmax_case_strong := Z.max_case_strong.
-Lemma Zmax_spec : forall x y:Z,
- x >= y /\ Zmax x y = x \/
- x < y /\ Zmax x y = y.
+Lemma Zmax_spec : forall x y,
+ x >= y /\ Zmax x y = x \/ x < y /\ Zmax x y = y.
Proof.
- intros; unfold Zmax, Zlt, Zge.
- destruct (Zcompare x y); [ left | right | left ]; split; auto; discriminate.
+ intros x y. rewrite Zge_iff_le. destruct (Z.max_spec x y); auto.
Qed.
-Lemma Zmax_left : forall n m:Z, n>=m -> Zmax n m = n.
-Proof.
- intros n m; unfold Zmax, Zge; destruct (n ?= m); auto.
- intro H; elim H; auto.
-Qed.
+Lemma Zmax_left : forall n m, n>=m -> Zmax n m = n.
+Proof. intros x y. rewrite Zge_iff_le. apply Zmax_l. Qed.
-Lemma Zmax_right : forall n m:Z, n<=m -> Zmax n m = m.
-Proof.
- intros n m; unfold Zmax, Zle.
- generalize (Zcompare_Eq_eq n m).
- destruct (n ?= m); auto.
- intros _ H; elim H; auto.
-Qed.
+Definition Zmax_right : forall n m, n<=m -> Zmax n m = m := Zmax_r.
(** * Least upper bound properties of max *)
-Lemma Zle_max_l : forall n m:Z, n <= Zmax n m.
-Proof.
- intros; apply Zmax_case_strong; auto with zarith.
-Qed.
+Definition Zle_max_l : forall n m, n <= Zmax n m := Z.le_max_l.
+Definition Zle_max_r : forall n m, m <= Zmax n m := Z.le_max_r.
-Notation Zmax1 := Zle_max_l (only parsing).
+Definition Zmax_lub : forall n m p, n <= p -> m <= p -> Zmax n m <= p
+ := Z.max_lub.
-Lemma Zle_max_r : forall n m:Z, m <= Zmax n m.
-Proof.
- intros; apply Zmax_case_strong; auto with zarith.
-Qed.
+Definition Zmax_lub_lt : forall n m p:Z, n < p -> m < p -> Zmax n m < p
+ := Z.max_lub_lt.
-Notation Zmax2 := Zle_max_r (only parsing).
-Lemma Zmax_lub : forall n m p:Z, n <= p -> m <= p -> Zmax n m <= p.
-Proof.
- intros; apply Zmax_case; assumption.
-Qed.
+(** * Compatibility with order *)
-(** * Semi-lattice properties of max *)
+Definition Zle_max_compat_r : forall n m p, n <= m -> Zmax n p <= Zmax m p
+ := Z.max_le_compat_r.
-Lemma Zmax_idempotent : forall n:Z, Zmax n n = n.
-Proof.
- intros; apply Zmax_case; auto.
-Qed.
+Definition Zle_max_compat_l : forall n m p, n <= m -> Zmax p n <= Zmax p m
+ := Z.max_le_compat_l.
-Lemma Zmax_comm : forall n m:Z, Zmax n m = Zmax m n.
-Proof.
- intros; do 2 apply Zmax_case_strong; intros;
- apply Zle_antisym; auto with zarith.
-Qed.
-Lemma Zmax_assoc : forall n m p:Z, Zmax n (Zmax m p) = Zmax (Zmax n m) p.
-Proof.
- intros n m p; repeat apply Zmax_case_strong; intros;
- reflexivity || (try apply Zle_antisym); eauto with zarith.
-Qed.
+(** * Semi-lattice properties of max *)
+
+Definition Zmax_idempotent : forall n, Zmax n n = n := Z.max_id.
+Definition Zmax_comm : forall n m, Zmax n m = Zmax m n := Z.max_comm.
+Definition Zmax_assoc : forall n m p, Zmax n (Zmax m p) = Zmax (Zmax n m) p
+ := Z.max_assoc.
(** * Additional properties of max *)
-Lemma Zmax_irreducible_inf : forall n m:Z, Zmax n m = n \/ Zmax n m = m.
-Proof.
- intros; apply Zmax_case; auto.
-Qed.
+Lemma Zmax_irreducible_dec : forall n m, {Zmax n m = n} + {Zmax n m = m}.
+Proof. exact Z.max_dec. Qed.
+
+Definition Zmax_le_prime : forall n m p, p <= Zmax n m -> p <= n \/ p <= m
+ := Z.max_le.
-Lemma Zmax_le_prime_inf : forall n m p:Z, p <= Zmax n m -> p <= n \/ p <= m.
-Proof.
- intros n m p; apply Zmax_case; auto.
-Qed.
(** * Operations preserving max *)
-Lemma Zsucc_max_distr :
- forall n m:Z, Zsucc (Zmax n m) = Zmax (Zsucc n) (Zsucc m).
-Proof.
- intros n m; unfold Zmax in |- *; rewrite (Zcompare_succ_compat n m);
- elim_compare n m; intros E; rewrite E; auto with arith.
-Qed.
+Definition Zsucc_max_distr :
+ forall n m:Z, Zsucc (Zmax n m) = Zmax (Zsucc n) (Zsucc m)
+ := Z.succ_max_distr.
-Lemma Zplus_max_distr_r : forall n m p:Z, Zmax (n + p) (m + p) = Zmax n m + p.
-Proof.
- intros x y n; unfold Zmax in |- *.
- rewrite (Zplus_comm x n); rewrite (Zplus_comm y n);
- rewrite (Zcompare_plus_compat x y n).
- case (x ?= y); apply Zplus_comm.
-Qed.
+Definition Zplus_max_distr_l : forall n m p:Z, Zmax (p + n) (p + m) = p + Zmax n m
+ := Z.plus_max_distr_l.
+
+Definition Zplus_max_distr_r : forall n m p:Z, Zmax (n + p) (m + p) = Zmax n m + p
+ := Z.plus_max_distr_r.
(** * Maximum and Zpos *)
-Lemma Zpos_max : forall p q, Zpos (Pmax p q) = Zmax (Zpos p) (Zpos q).
-Proof.
- intros; unfold Zmax, Pmax; simpl; generalize (Pcompare_Eq_eq p q).
- destruct Pcompare; auto.
- intro H; rewrite H; auto.
-Qed.
+Definition Zpos_max : forall p q, Zpos (Pmax p q) = Zmax (Zpos p) (Zpos q)
+ := Z.pos_max.
-Lemma Zpos_max_1 : forall p, Zmax 1 (Zpos p) = Zpos p.
-Proof.
- intros; unfold Zmax; simpl; destruct p; simpl; auto.
-Qed.
+Definition Zpos_max_1 : forall p, Zmax 1 (Zpos p) = Zpos p
+ := Z.pos_max_1.
(** * Characterization of Pminus in term of Zminus and Zmax *)
-Lemma Zpos_minus : forall p q, Zpos (Pminus p q) = Zmax 1 (Zpos p - Zpos q).
-Proof.
- intros.
- case_eq (Pcompare p q Eq).
- intros H; rewrite (Pcompare_Eq_eq _ _ H).
- rewrite Zminus_diag.
- unfold Zmax; simpl.
- unfold Pminus; rewrite Pminus_mask_diag; auto.
- intros; rewrite Pminus_Lt; auto.
- destruct (Zmax_spec 1 (Zpos p - Zpos q)) as [(H1,H2)|(H1,H2)]; auto.
- elimtype False; clear H2.
- assert (H1':=Zlt_trans 0 1 _ Zlt_0_1 H1).
- generalize (Zlt_0_minus_lt _ _ H1').
- unfold Zlt; simpl.
- rewrite (ZC2 _ _ H); intro; discriminate.
- intros; simpl; rewrite H.
- symmetry; apply Zpos_max_1.
-Qed.
+Definition Zpos_minus :
+ forall p q, Zpos (Pminus p q) = Zmax 1 (Zpos p - Zpos q)
+ := Zpos_minus.
+(* begin hide *)
+(* Compatibility *)
+Notation Zmax1 := Zle_max_l (only parsing).
+Notation Zmax2 := Zle_max_r (only parsing).
+Notation Zmax_irreducible_inf := Zmax_irreducible_dec (only parsing).
+Notation Zmax_le_prime_inf := Zmax_le_prime (only parsing).
+(* end hide *)