summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zhints.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zhints.v')
-rw-r--r--theories/ZArith/Zhints.v386
1 files changed, 386 insertions, 0 deletions
diff --git a/theories/ZArith/Zhints.v b/theories/ZArith/Zhints.v
new file mode 100644
index 00000000..a9ee2c87
--- /dev/null
+++ b/theories/ZArith/Zhints.v
@@ -0,0 +1,386 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Zhints.v,v 1.8.2.1 2004/07/16 19:31:21 herbelin Exp $ i*)
+
+(** This file centralizes the lemmas about [Z], classifying them
+ according to the way they can be used in automatic search *)
+
+(*i*)
+
+(* Lemmas which clearly leads to simplification during proof search are *)
+(* declared as Hints. A definite status (Hint or not) for the other lemmas *)
+(* remains to be given *)
+
+(* Structure of the file *)
+(* - simplification lemmas (only those are declared as Hints) *)
+(* - reversible lemmas relating operators *)
+(* - useful Bottom-up lemmas *)
+(* - irreversible lemmas with meta-variables *)
+(* - unclear or too specific lemmas *)
+(* - lemmas to be used as rewrite rules *)
+
+(* Lemmas involving positive and compare are not taken into account *)
+
+Require Import BinInt.
+Require Import Zorder.
+Require Import Zmin.
+Require Import Zabs.
+Require Import Zcompare.
+Require Import Znat.
+Require Import auxiliary.
+Require Import Zmisc.
+Require Import Wf_Z.
+
+(**********************************************************************)
+(* Simplification lemmas *)
+(* No subgoal or smaller subgoals *)
+
+Hint Resolve
+ (* A) Reversible simplification lemmas (no loss of information) *)
+ (* Should clearly declared as hints *)
+
+ (* Lemmas ending by eq *)
+ Zsucc_eq_compat (* :(n,m:Z)`n = m`->`(Zs n) = (Zs m)` *)
+
+ (* Lemmas ending by Zgt *)
+ Zsucc_gt_compat (* :(n,m:Z)`m > n`->`(Zs m) > (Zs n)` *)
+ Zgt_succ (* :(n:Z)`(Zs n) > n` *)
+ Zorder.Zgt_pos_0 (* :(p:positive)`(POS p) > 0` *)
+ Zplus_gt_compat_l (* :(n,m,p:Z)`n > m`->`p+n > p+m` *)
+ Zplus_gt_compat_r (* :(n,m,p:Z)`n > m`->`n+p > m+p` *)
+
+ (* Lemmas ending by Zlt *)
+ Zlt_succ (* :(n:Z)`n < (Zs n)` *)
+ Zsucc_lt_compat (* :(n,m:Z)`n < m`->`(Zs n) < (Zs m)` *)
+ Zlt_pred (* :(n:Z)`(Zpred n) < n` *)
+ Zplus_lt_compat_l (* :(n,m,p:Z)`n < m`->`p+n < p+m` *)
+ Zplus_lt_compat_r (* :(n,m,p:Z)`n < m`->`n+p < m+p` *)
+
+ (* Lemmas ending by Zle *)
+ Zle_0_nat (* :(n:nat)`0 <= (inject_nat n)` *)
+ Zorder.Zle_0_pos (* :(p:positive)`0 <= (POS p)` *)
+ Zle_refl (* :(n:Z)`n <= n` *)
+ Zle_succ (* :(n:Z)`n <= (Zs n)` *)
+ Zsucc_le_compat (* :(n,m:Z)`m <= n`->`(Zs m) <= (Zs n)` *)
+ Zle_pred (* :(n:Z)`(Zpred n) <= n` *)
+ Zle_min_l (* :(n,m:Z)`(Zmin n m) <= n` *)
+ Zle_min_r (* :(n,m:Z)`(Zmin n m) <= m` *)
+ Zplus_le_compat_l (* :(n,m,p:Z)`n <= m`->`p+n <= p+m` *)
+ Zplus_le_compat_r (* :(a,b,c:Z)`a <= b`->`a+c <= b+c` *)
+ Zabs_pos (* :(x:Z)`0 <= |x|` *)
+
+ (* B) Irreversible simplification lemmas : Probably to be declared as *)
+ (* hints, when no other simplification is possible *)
+
+ (* Lemmas ending by eq *)
+ BinInt.Z_eq_mult (* :(x,y:Z)`y = 0`->`y*x = 0` *)
+ Zplus_eq_compat (* :(n,m,p,q:Z)`n = m`->`p = q`->`n+p = m+q` *)
+
+ (* Lemmas ending by Zge *)
+ Zorder.Zmult_ge_compat_r (* :(a,b,c:Z)`a >= b`->`c >= 0`->`a*c >= b*c` *)
+ Zorder.Zmult_ge_compat_l (* :(a,b,c:Z)`a >= b`->`c >= 0`->`c*a >= c*b` *)
+ Zorder.Zmult_ge_compat (* :
+ (a,b,c,d:Z)`a >= c`->`b >= d`->`c >= 0`->`d >= 0`->`a*b >= c*d` *)
+
+ (* Lemmas ending by Zlt *)
+ Zorder.Zmult_gt_0_compat (* :(a,b:Z)`a > 0`->`b > 0`->`a*b > 0` *)
+ Zlt_lt_succ (* :(n,m:Z)`n < m`->`n < (Zs m)` *)
+
+ (* Lemmas ending by Zle *)
+ Zorder.Zmult_le_0_compat (* :(x,y:Z)`0 <= x`->`0 <= y`->`0 <= x*y` *)
+ Zorder.Zmult_le_compat_r (* :(a,b,c:Z)`a <= b`->`0 <= c`->`a*c <= b*c` *)
+ Zorder.Zmult_le_compat_l (* :(a,b,c:Z)`a <= b`->`0 <= c`->`c*a <= c*b` *)
+ Zplus_le_0_compat (* :(x,y:Z)`0 <= x`->`0 <= y`->`0 <= x+y` *)
+ Zle_le_succ (* :(x,y:Z)`x <= y`->`x <= (Zs y)` *)
+ Zplus_le_compat (* :(n,m,p,q:Z)`n <= m`->`p <= q`->`n+p <= m+q` *)
+
+ : zarith.
+
+(**********************************************************************)
+(* Reversible lemmas relating operators *)
+(* Probably to be declared as hints but need to define precedences *)
+
+(* A) Conversion between comparisons/predicates and arithmetic operators
+
+(* Lemmas ending by eq *)
+Zegal_left: (x,y:Z)`x = y`->`x+(-y) = 0`
+Zabs_eq: (x:Z)`0 <= x`->`|x| = x`
+Zeven_div2: (x:Z)(Zeven x)->`x = 2*(Zdiv2 x)`
+Zodd_div2: (x:Z)`x >= 0`->(Zodd x)->`x = 2*(Zdiv2 x)+1`
+
+(* Lemmas ending by Zgt *)
+Zgt_left_rev: (x,y:Z)`x+(-y) > 0`->`x > y`
+Zgt_left_gt: (x,y:Z)`x > y`->`x+(-y) > 0`
+
+(* Lemmas ending by Zlt *)
+Zlt_left_rev: (x,y:Z)`0 < y+(-x)`->`x < y`
+Zlt_left_lt: (x,y:Z)`x < y`->`0 < y+(-x)`
+Zlt_O_minus_lt: (n,m:Z)`0 < n-m`->`m < n`
+
+(* Lemmas ending by Zle *)
+Zle_left: (x,y:Z)`x <= y`->`0 <= y+(-x)`
+Zle_left_rev: (x,y:Z)`0 <= y+(-x)`->`x <= y`
+Zlt_left: (x,y:Z)`x < y`->`0 <= y+(-1)+(-x)`
+Zge_left: (x,y:Z)`x >= y`->`0 <= x+(-y)`
+Zgt_left: (x,y:Z)`x > y`->`0 <= x+(-1)+(-y)`
+
+(* B) Conversion between nat comparisons and Z comparisons *)
+
+(* Lemmas ending by eq *)
+inj_eq: (x,y:nat)x=y->`(inject_nat x) = (inject_nat y)`
+
+(* Lemmas ending by Zge *)
+inj_ge: (x,y:nat)(ge x y)->`(inject_nat x) >= (inject_nat y)`
+
+(* Lemmas ending by Zgt *)
+inj_gt: (x,y:nat)(gt x y)->`(inject_nat x) > (inject_nat y)`
+
+(* Lemmas ending by Zlt *)
+inj_lt: (x,y:nat)(lt x y)->`(inject_nat x) < (inject_nat y)`
+
+(* Lemmas ending by Zle *)
+inj_le: (x,y:nat)(le x y)->`(inject_nat x) <= (inject_nat y)`
+
+(* C) Conversion between comparisons *)
+
+(* Lemmas ending by Zge *)
+not_Zlt: (x,y:Z)~`x < y`->`x >= y`
+Zle_ge: (m,n:Z)`m <= n`->`n >= m`
+
+(* Lemmas ending by Zgt *)
+Zle_gt_S: (n,p:Z)`n <= p`->`(Zs p) > n`
+not_Zle: (x,y:Z)~`x <= y`->`x > y`
+Zlt_gt: (m,n:Z)`m < n`->`n > m`
+Zle_S_gt: (n,m:Z)`(Zs n) <= m`->`m > n`
+
+(* Lemmas ending by Zlt *)
+not_Zge: (x,y:Z)~`x >= y`->`x < y`
+Zgt_lt: (m,n:Z)`m > n`->`n < m`
+Zle_lt_n_Sm: (n,m:Z)`n <= m`->`n < (Zs m)`
+
+(* Lemmas ending by Zle *)
+Zlt_ZERO_pred_le_ZERO: (x:Z)`0 < x`->`0 <= (Zpred x)`
+not_Zgt: (x,y:Z)~`x > y`->`x <= y`
+Zgt_le_S: (n,p:Z)`p > n`->`(Zs n) <= p`
+Zgt_S_le: (n,p:Z)`(Zs p) > n`->`n <= p`
+Zge_le: (m,n:Z)`m >= n`->`n <= m`
+Zlt_le_S: (n,p:Z)`n < p`->`(Zs n) <= p`
+Zlt_n_Sm_le: (n,m:Z)`n < (Zs m)`->`n <= m`
+Zlt_le_weak: (n,m:Z)`n < m`->`n <= m`
+Zle_refl: (n,m:Z)`n = m`->`n <= m`
+
+(* D) Irreversible simplification involving several comparaisons, *)
+(* useful with clear precedences *)
+
+(* Lemmas ending by Zlt *)
+Zlt_le_reg :(a,b,c,d:Z)`a < b`->`c <= d`->`a+c < b+d`
+Zle_lt_reg : (a,b,c,d:Z)`a <= b`->`c < d`->`a+c < b+d`
+
+(* D) What is decreasing here ? *)
+
+(* Lemmas ending by eq *)
+Zplus_minus: (n,m,p:Z)`n = m+p`->`p = n-m`
+
+(* Lemmas ending by Zgt *)
+Zgt_pred: (n,p:Z)`p > (Zs n)`->`(Zpred p) > n`
+
+(* Lemmas ending by Zlt *)
+Zlt_pred: (n,p:Z)`(Zs n) < p`->`n < (Zpred p)`
+
+*)
+
+(**********************************************************************)
+(* Useful Bottom-up lemmas *)
+
+(* A) Bottom-up simplification: should be used
+
+(* Lemmas ending by eq *)
+Zeq_add_S: (n,m:Z)`(Zs n) = (Zs m)`->`n = m`
+Zsimpl_plus_l: (n,m,p:Z)`n+m = n+p`->`m = p`
+Zplus_unit_left: (n,m:Z)`n+0 = m`->`n = m`
+Zplus_unit_right: (n,m:Z)`n = m+0`->`n = m`
+
+(* Lemmas ending by Zgt *)
+Zsimpl_gt_plus_l: (n,m,p:Z)`p+n > p+m`->`n > m`
+Zsimpl_gt_plus_r: (n,m,p:Z)`n+p > m+p`->`n > m`
+Zgt_S_n: (n,p:Z)`(Zs p) > (Zs n)`->`p > n`
+
+(* Lemmas ending by Zlt *)
+Zsimpl_lt_plus_l: (n,m,p:Z)`p+n < p+m`->`n < m`
+Zsimpl_lt_plus_r: (n,m,p:Z)`n+p < m+p`->`n < m`
+Zlt_S_n: (n,m:Z)`(Zs n) < (Zs m)`->`n < m`
+
+(* Lemmas ending by Zle *)
+Zsimpl_le_plus_l: (p,n,m:Z)`p+n <= p+m`->`n <= m`
+Zsimpl_le_plus_r: (p,n,m:Z)`n+p <= m+p`->`n <= m`
+Zle_S_n: (n,m:Z)`(Zs m) <= (Zs n)`->`m <= n`
+
+(* B) Bottom-up irreversible (syntactic) simplification *)
+
+(* Lemmas ending by Zle *)
+Zle_trans_S: (n,m:Z)`(Zs n) <= m`->`n <= m`
+
+(* C) Other unclearly simplifying lemmas *)
+
+(* Lemmas ending by Zeq *)
+Zmult_eq: (x,y:Z)`x <> 0`->`y*x = 0`->`y = 0`
+
+(* Lemmas ending by Zgt *)
+Zmult_gt: (x,y:Z)`x > 0`->`x*y > 0`->`y > 0`
+
+(* Lemmas ending by Zlt *)
+pZmult_lt: (x,y:Z)`x > 0`->`0 < y*x`->`0 < y`
+
+(* Lemmas ending by Zle *)
+Zmult_le: (x,y:Z)`x > 0`->`0 <= y*x`->`0 <= y`
+OMEGA1: (x,y:Z)`x = y`->`0 <= x`->`0 <= y`
+*)
+
+(**********************************************************************)
+(* Irreversible lemmas with meta-variables *)
+(* To be used by EAuto
+
+Hints Immediate
+(* Lemmas ending by eq *)
+Zle_antisym: (n,m:Z)`n <= m`->`m <= n`->`n = m`
+
+(* Lemmas ending by Zge *)
+Zge_trans: (n,m,p:Z)`n >= m`->`m >= p`->`n >= p`
+
+(* Lemmas ending by Zgt *)
+Zgt_trans: (n,m,p:Z)`n > m`->`m > p`->`n > p`
+Zgt_trans_S: (n,m,p:Z)`(Zs n) > m`->`m > p`->`n > p`
+Zle_gt_trans: (n,m,p:Z)`m <= n`->`m > p`->`n > p`
+Zgt_le_trans: (n,m,p:Z)`n > m`->`p <= m`->`n > p`
+
+(* Lemmas ending by Zlt *)
+Zlt_trans: (n,m,p:Z)`n < m`->`m < p`->`n < p`
+Zlt_le_trans: (n,m,p:Z)`n < m`->`m <= p`->`n < p`
+Zle_lt_trans: (n,m,p:Z)`n <= m`->`m < p`->`n < p`
+
+(* Lemmas ending by Zle *)
+Zle_trans: (n,m,p:Z)`n <= m`->`m <= p`->`n <= p`
+*)
+
+(**********************************************************************)
+(* Unclear or too specific lemmas *)
+(* Not to be used ?? *)
+
+(* A) Irreversible and too specific (not enough regular)
+
+(* Lemmas ending by Zle *)
+Zle_mult: (x,y:Z)`x > 0`->`0 <= y`->`0 <= y*x`
+Zle_mult_approx: (x,y,z:Z)`x > 0`->`z > 0`->`0 <= y`->`0 <= y*x+z`
+OMEGA6: (x,y,z:Z)`0 <= x`->`y = 0`->`0 <= x+y*z`
+OMEGA7: (x,y,z,t:Z)`z > 0`->`t > 0`->`0 <= x`->`0 <= y`->`0 <= x*z+y*t`
+
+
+(* B) Expansion and too specific ? *)
+
+(* Lemmas ending by Zge *)
+Zge_mult_simpl: (a,b,c:Z)`c > 0`->`a*c >= b*c`->`a >= b`
+
+(* Lemmas ending by Zgt *)
+Zgt_mult_simpl: (a,b,c:Z)`c > 0`->`a*c > b*c`->`a > b`
+Zgt_square_simpl: (x,y:Z)`x >= 0`->`y >= 0`->`x*x > y*y`->`x > y`
+
+(* Lemmas ending by Zle *)
+Zle_mult_simpl: (a,b,c:Z)`c > 0`->`a*c <= b*c`->`a <= b`
+Zmult_le_approx: (x,y,z:Z)`x > 0`->`x > z`->`0 <= y*x+z`->`0 <= y`
+
+(* C) Reversible but too specific ? *)
+
+(* Lemmas ending by Zlt *)
+Zlt_minus: (n,m:Z)`0 < m`->`n-m < n`
+*)
+
+(**********************************************************************)
+(* Lemmas to be used as rewrite rules *)
+(* but can also be used as hints
+
+(* Left-to-right simplification lemmas (a symbol disappears) *)
+
+Zcompare_n_S: (n,m:Z)(Zcompare (Zs n) (Zs m))=(Zcompare n m)
+Zmin_n_n: (n:Z)`(Zmin n n) = n`
+Zmult_1_n: (n:Z)`1*n = n`
+Zmult_n_1: (n:Z)`n*1 = n`
+Zminus_plus: (n,m:Z)`n+m-n = m`
+Zle_plus_minus: (n,m:Z)`n+(m-n) = m`
+Zopp_Zopp: (x:Z)`(-(-x)) = x`
+Zero_left: (x:Z)`0+x = x`
+Zero_right: (x:Z)`x+0 = x`
+Zplus_inverse_r: (x:Z)`x+(-x) = 0`
+Zplus_inverse_l: (x:Z)`(-x)+x = 0`
+Zopp_intro: (x,y:Z)`(-x) = (-y)`->`x = y`
+Zmult_one: (x:Z)`1*x = x`
+Zero_mult_left: (x:Z)`0*x = 0`
+Zero_mult_right: (x:Z)`x*0 = 0`
+Zmult_Zopp_Zopp: (x,y:Z)`(-x)*(-y) = x*y`
+
+(* Right-to-left simplification lemmas (a symbol disappears) *)
+
+Zpred_Sn: (m:Z)`m = (Zpred (Zs m))`
+Zs_pred: (n:Z)`n = (Zs (Zpred n))`
+Zplus_n_O: (n:Z)`n = n+0`
+Zmult_n_O: (n:Z)`0 = n*0`
+Zminus_n_O: (n:Z)`n = n-0`
+Zminus_n_n: (n:Z)`0 = n-n`
+Zred_factor6: (x:Z)`x = x+0`
+Zred_factor0: (x:Z)`x = x*1`
+
+(* Unclear orientation (no symbol disappears) *)
+
+Zplus_n_Sm: (n,m:Z)`(Zs (n+m)) = n+(Zs m)`
+Zmult_n_Sm: (n,m:Z)`n*m+n = n*(Zs m)`
+Zmin_SS: (n,m:Z)`(Zs (Zmin n m)) = (Zmin (Zs n) (Zs m))`
+Zplus_assoc_l: (n,m,p:Z)`n+(m+p) = n+m+p`
+Zplus_assoc_r: (n,m,p:Z)`n+m+p = n+(m+p)`
+Zplus_permute: (n,m,p:Z)`n+(m+p) = m+(n+p)`
+Zplus_Snm_nSm: (n,m:Z)`(Zs n)+m = n+(Zs m)`
+Zminus_plus_simpl: (n,m,p:Z)`n-m = p+n-(p+m)`
+Zminus_Sn_m: (n,m:Z)`(Zs (n-m)) = (Zs n)-m`
+Zmult_plus_distr_l: (n,m,p:Z)`(n+m)*p = n*p+m*p`
+Zmult_minus_distr: (n,m,p:Z)`(n-m)*p = n*p-m*p`
+Zmult_assoc_r: (n,m,p:Z)`n*m*p = n*(m*p)`
+Zmult_assoc_l: (n,m,p:Z)`n*(m*p) = n*m*p`
+Zmult_permute: (n,m,p:Z)`n*(m*p) = m*(n*p)`
+Zmult_Sm_n: (n,m:Z)`n*m+m = (Zs n)*m`
+Zmult_Zplus_distr: (x,y,z:Z)`x*(y+z) = x*y+x*z`
+Zmult_plus_distr: (n,m,p:Z)`(n+m)*p = n*p+m*p`
+Zopp_Zplus: (x,y:Z)`(-(x+y)) = (-x)+(-y)`
+Zplus_sym: (x,y:Z)`x+y = y+x`
+Zplus_assoc: (x,y,z:Z)`x+(y+z) = x+y+z`
+Zmult_sym: (x,y:Z)`x*y = y*x`
+Zmult_assoc: (x,y,z:Z)`x*(y*z) = x*y*z`
+Zopp_Zmult: (x,y:Z)`(-x)*y = (-(x*y))`
+Zplus_S_n: (x,y:Z)`(Zs x)+y = (Zs (x+y))`
+Zopp_one: (x:Z)`(-x) = x*(-1)`
+Zopp_Zmult_r: (x,y:Z)`(-(x*y)) = x*(-y)`
+Zmult_Zopp_left: (x,y:Z)`(-x)*y = x*(-y)`
+Zopp_Zmult_l: (x,y:Z)`(-(x*y)) = (-x)*y`
+Zred_factor1: (x:Z)`x+x = x*2`
+Zred_factor2: (x,y:Z)`x+x*y = x*(1+y)`
+Zred_factor3: (x,y:Z)`x*y+x = x*(1+y)`
+Zred_factor4: (x,y,z:Z)`x*y+x*z = x*(y+z)`
+Zminus_Zplus_compatible: (x,y,n:Z)`x+n-(y+n) = x-y`
+Zmin_plus: (x,y,n:Z)`(Zmin (x+n) (y+n)) = (Zmin x y)+n`
+
+(* nat <-> Z *)
+inj_S: (y:nat)`(inject_nat (S y)) = (Zs (inject_nat y))`
+inj_plus: (x,y:nat)`(inject_nat (plus x y)) = (inject_nat x)+(inject_nat y)`
+inj_mult: (x,y:nat)`(inject_nat (mult x y)) = (inject_nat x)*(inject_nat y)`
+inj_minus1:
+ (x,y:nat)(le y x)->`(inject_nat (minus x y)) = (inject_nat x)-(inject_nat y)`
+inj_minus2: (x,y:nat)(gt y x)->`(inject_nat (minus x y)) = 0`
+
+(* Too specific ? *)
+Zred_factor5: (x,y:Z)`x*0+y = y`
+*)
+
+(*i*) \ No newline at end of file