summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zgcd_alt.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zgcd_alt.v')
-rw-r--r--theories/ZArith/Zgcd_alt.v70
1 files changed, 35 insertions, 35 deletions
diff --git a/theories/ZArith/Zgcd_alt.v b/theories/ZArith/Zgcd_alt.v
index 286dd710..447f6101 100644
--- a/theories/ZArith/Zgcd_alt.v
+++ b/theories/ZArith/Zgcd_alt.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zgcd_alt.v 10997 2008-05-27 15:16:40Z letouzey $ i*)
+(*i $Id$ i*)
(** * Zgcd_alt : an alternate version of Zgcd, based on Euler's algorithm *)
@@ -30,7 +30,7 @@ Open Scope Z_scope.
(** In Coq, we need to control the number of iteration of modulo.
For that, we use an explicit measure in [nat], and we prove later
- that using [2*d] is enough, where [d] is the number of binary
+ that using [2*d] is enough, where [d] is the number of binary
digits of the first argument. *)
Fixpoint Zgcdn (n:nat) : Z -> Z -> Z := fun a b =>
@@ -43,17 +43,17 @@ Open Scope Z_scope.
end
end.
- Definition Zgcd_bound (a:Z) :=
+ Definition Zgcd_bound (a:Z) :=
match a with
| Z0 => S O
| Zpos p => let n := Psize p in (n+n)%nat
| Zneg p => let n := Psize p in (n+n)%nat
end.
-
+
Definition Zgcd_alt a b := Zgcdn (Zgcd_bound a) a b.
-
+
(** A first obvious fact : [Zgcd a b] is positive. *)
-
+
Lemma Zgcdn_pos : forall n a b,
0 <= Zgcdn n a b.
Proof.
@@ -61,22 +61,22 @@ Open Scope Z_scope.
simpl; auto with zarith.
destruct a; simpl; intros; auto with zarith; auto.
Qed.
-
+
Lemma Zgcd_alt_pos : forall a b, 0 <= Zgcd_alt a b.
Proof.
intros; unfold Zgcd; apply Zgcdn_pos; auto.
Qed.
-
+
(** We now prove that Zgcd is indeed a gcd. *)
-
+
(** 1) We prove a weaker & easier bound. *)
-
+
Lemma Zgcdn_linear_bound : forall n a b,
Zabs a < Z_of_nat n -> Zis_gcd a b (Zgcdn n a b).
Proof.
induction n.
simpl; intros.
- elimtype False; generalize (Zabs_pos a); omega.
+ exfalso; generalize (Zabs_pos a); omega.
destruct a; intros; simpl;
[ generalize (Zis_gcd_0_abs b); intuition | | ];
unfold Zmod;
@@ -93,17 +93,17 @@ Open Scope Z_scope.
apply Zis_gcd_minus; apply Zis_gcd_sym.
apply Zis_gcd_for_euclid2; auto.
Qed.
-
+
(** 2) For Euclid's algorithm, the worst-case situation corresponds
to Fibonacci numbers. Let's define them: *)
-
+
Fixpoint fibonacci (n:nat) : Z :=
match n with
| O => 1
| S O => 1
| S (S n as p) => fibonacci p + fibonacci n
end.
-
+
Lemma fibonacci_pos : forall n, 0 <= fibonacci n.
Proof.
cut (forall N n, (n<N)%nat -> 0<=fibonacci n).
@@ -118,7 +118,7 @@ Open Scope Z_scope.
change (0 <= fibonacci (S n) + fibonacci n).
generalize (IHN n) (IHN (S n)); omega.
Qed.
-
+
Lemma fibonacci_incr :
forall n m, (n<=m)%nat -> fibonacci n <= fibonacci m.
Proof.
@@ -131,11 +131,11 @@ Open Scope Z_scope.
change (fibonacci (S m) <= fibonacci (S m)+fibonacci m).
generalize (fibonacci_pos m); omega.
Qed.
-
+
(** 3) We prove that fibonacci numbers are indeed worst-case:
for a given number [n], if we reach a conclusion about [gcd(a,b)] in
exactly [n+1] loops, then [fibonacci (n+1)<=a /\ fibonacci(n+2)<=b] *)
-
+
Lemma Zgcdn_worst_is_fibonacci : forall n a b,
0 < a < b ->
Zis_gcd a b (Zgcdn (S n) a b) ->
@@ -192,14 +192,14 @@ Open Scope Z_scope.
simpl in H5.
elim H5; auto.
Qed.
-
+
(** 3b) We reformulate the previous result in a more positive way. *)
-
+
Lemma Zgcdn_ok_before_fibonacci : forall n a b,
0 < a < b -> a < fibonacci (S n) ->
Zis_gcd a b (Zgcdn n a b).
Proof.
- destruct a; [ destruct 1; elimtype False; omega | | destruct 1; discriminate].
+ destruct a; [ destruct 1; exfalso; omega | | destruct 1; discriminate].
cut (forall k n b,
k = (S (nat_of_P p) - n)%nat ->
0 < Zpos p < b -> Zpos p < fibonacci (S n) ->
@@ -224,44 +224,44 @@ Open Scope Z_scope.
replace (Zgcdn n (Zpos p) b) with (Zgcdn (S n) (Zpos p) b); auto.
generalize (H2 H3); clear H2 H3; omega.
Qed.
-
+
(** 4) The proposed bound leads to a fibonacci number that is big enough. *)
-
+
Lemma Zgcd_bound_fibonacci :
forall a, 0 < a -> a < fibonacci (Zgcd_bound a).
Proof.
destruct a; [omega| | intro H; discriminate].
intros _.
- induction p; [ | | compute; auto ];
+ induction p; [ | | compute; auto ];
simpl Zgcd_bound in *;
- rewrite plus_comm; simpl plus;
+ rewrite plus_comm; simpl plus;
set (n:= (Psize p+Psize p)%nat) in *; simpl;
assert (n <> O) by (unfold n; destruct p; simpl; auto).
-
+
destruct n as [ |m]; [elim H; auto| ].
generalize (fibonacci_pos m); rewrite Zpos_xI; omega.
destruct n as [ |m]; [elim H; auto| ].
generalize (fibonacci_pos m); rewrite Zpos_xO; omega.
Qed.
-
+
(* 5) the end: we glue everything together and take care of
situations not corresponding to [0<a<b]. *)
Lemma Zgcdn_is_gcd :
- forall n a b, (Zgcd_bound a <= n)%nat ->
+ forall n a b, (Zgcd_bound a <= n)%nat ->
Zis_gcd a b (Zgcdn n a b).
Proof.
destruct a; intros.
simpl in H.
- destruct n; [elimtype False; omega | ].
+ destruct n; [exfalso; omega | ].
simpl; generalize (Zis_gcd_0_abs b); intuition.
(*Zpos*)
generalize (Zgcd_bound_fibonacci (Zpos p)).
simpl Zgcd_bound in *.
remember (Psize p+Psize p)%nat as m.
assert (1 < m)%nat.
- rewrite Heqm; destruct p; simpl; rewrite 1? plus_comm;
+ rewrite Heqm; destruct p; simpl; rewrite 1? plus_comm;
auto with arith.
destruct m as [ |m]; [inversion H0; auto| ].
destruct n as [ |n]; [inversion H; auto| ].
@@ -277,15 +277,15 @@ Open Scope Z_scope.
apply Zgcdn_ok_before_fibonacci; auto.
apply Zlt_le_trans with (fibonacci (S m)); [ omega | apply fibonacci_incr; auto].
subst r; simpl.
- destruct m as [ |m]; [elimtype False; omega| ].
- destruct n as [ |n]; [elimtype False; omega| ].
+ destruct m as [ |m]; [exfalso; omega| ].
+ destruct n as [ |n]; [exfalso; omega| ].
simpl; apply Zis_gcd_sym; apply Zis_gcd_0.
(*Zneg*)
generalize (Zgcd_bound_fibonacci (Zpos p)).
simpl Zgcd_bound in *.
remember (Psize p+Psize p)%nat as m.
assert (1 < m)%nat.
- rewrite Heqm; destruct p; simpl; rewrite 1? plus_comm;
+ rewrite Heqm; destruct p; simpl; rewrite 1? plus_comm;
auto with arith.
destruct m as [ |m]; [inversion H0; auto| ].
destruct n as [ |n]; [inversion H; auto| ].
@@ -303,11 +303,11 @@ Open Scope Z_scope.
apply Zgcdn_ok_before_fibonacci; auto.
apply Zlt_le_trans with (fibonacci (S m)); [ omega | apply fibonacci_incr; auto].
subst r; simpl.
- destruct m as [ |m]; [elimtype False; omega| ].
- destruct n as [ |n]; [elimtype False; omega| ].
+ destruct m as [ |m]; [exfalso; omega| ].
+ destruct n as [ |n]; [exfalso; omega| ].
simpl; apply Zis_gcd_sym; apply Zis_gcd_0.
Qed.
-
+
Lemma Zgcd_is_gcd :
forall a b, Zis_gcd a b (Zgcd_alt a b).
Proof.