summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zcompare.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zcompare.v')
-rw-r--r--theories/ZArith/Zcompare.v457
1 files changed, 66 insertions, 391 deletions
diff --git a/theories/ZArith/Zcompare.v b/theories/ZArith/Zcompare.v
index ae5302ee..20e1b006 100644
--- a/theories/ZArith/Zcompare.v
+++ b/theories/ZArith/Zcompare.v
@@ -1,387 +1,91 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $$ i*)
+(** Binary Integers : results about Zcompare *)
+(** Initial author: Pierre Crégut (CNET, Lannion, France *)
-(**********************************************************************)
-(** Binary Integers (Pierre Crégut, CNET, Lannion, France) *)
-(**********************************************************************)
+(** THIS FILE IS DEPRECATED.
+ It is now almost entirely made of compatibility formulations
+ for results already present in BinInt.Z. *)
-Require Export BinPos.
-Require Export BinInt.
-Require Import Lt.
-Require Import Gt.
-Require Import Plus.
-Require Import Mult.
+Require Export BinPos BinInt.
+Require Import Lt Gt Plus Mult. (* Useless now, for compatibility only *)
-Open Local Scope Z_scope.
+Local Open Scope Z_scope.
(***************************)
(** * Comparison on integers *)
-Lemma Zcompare_refl : forall n:Z, (n ?= n) = Eq.
-Proof.
- intro x; destruct x as [| p| p]; simpl in |- *;
- [ reflexivity | apply Pcompare_refl | rewrite Pcompare_refl; reflexivity ].
-Qed.
-
-Lemma Zcompare_Eq_eq : forall n m:Z, (n ?= m) = Eq -> n = m.
-Proof.
- intros x y; destruct x as [| x'| x']; destruct y as [| y'| y']; simpl in |- *;
- intro H; reflexivity || (try discriminate H);
- [ rewrite (Pcompare_Eq_eq x' y' H); reflexivity
- | rewrite (Pcompare_Eq_eq x' y');
- [ reflexivity
- | destruct ((x' ?= y')%positive Eq); reflexivity || discriminate ] ].
-Qed.
-
-Ltac destr_zcompare :=
- match goal with |- context [Zcompare ?x ?y] =>
- let H := fresh "H" in
- case_eq (Zcompare x y); intro H;
- [generalize (Zcompare_Eq_eq _ _ H); clear H; intro H |
- change (x<y)%Z in H |
- change (x>y)%Z in H ]
- end.
-
-Lemma Zcompare_Eq_iff_eq : forall n m:Z, (n ?= m) = Eq <-> n = m.
-Proof.
- intros x y; split; intro E;
- [ apply Zcompare_Eq_eq; assumption | rewrite E; apply Zcompare_refl ].
-Qed.
-
-Lemma Zcompare_antisym : forall n m:Z, CompOpp (n ?= m) = (m ?= n).
-Proof.
- intros x y; destruct x; destruct y; simpl in |- *;
- reflexivity || discriminate H || rewrite Pcompare_antisym;
- reflexivity.
-Qed.
-
Lemma Zcompare_Gt_Lt_antisym : forall n m:Z, (n ?= m) = Gt <-> (m ?= n) = Lt.
-Proof.
- intros x y.
- rewrite <- Zcompare_antisym. change Gt with (CompOpp Lt).
- split.
- auto using CompOpp_inj.
- intros; f_equal; auto.
-Qed.
-
-Lemma Zcompare_spec : forall n m, CompSpec eq Zlt n m (n ?= m).
-Proof.
- intros.
- destruct (n?=m) as [ ]_eqn:H; constructor; auto.
- apply Zcompare_Eq_eq; auto.
- red; rewrite <- Zcompare_antisym, H; auto.
-Qed.
+Proof Z.gt_lt_iff.
+Lemma Zcompare_antisym n m : CompOpp (n ?= m) = (m ?= n).
+Proof eq_sym (Z.compare_antisym n m).
(** * Transitivity of comparison *)
Lemma Zcompare_Lt_trans :
forall n m p:Z, (n ?= m) = Lt -> (m ?= p) = Lt -> (n ?= p) = Lt.
-Proof.
- intros x y z; case x; case y; case z; simpl;
- try discriminate; auto with arith.
- intros; eapply Plt_trans; eauto.
- intros p q r; rewrite 3 Pcompare_antisym; simpl.
- intros; eapply Plt_trans; eauto.
-Qed.
+Proof Z.lt_trans.
Lemma Zcompare_Gt_trans :
forall n m p:Z, (n ?= m) = Gt -> (m ?= p) = Gt -> (n ?= p) = Gt.
Proof.
- intros n m p Hnm Hmp.
- apply <- Zcompare_Gt_Lt_antisym.
- apply -> Zcompare_Gt_Lt_antisym in Hnm.
- apply -> Zcompare_Gt_Lt_antisym in Hmp.
- eapply Zcompare_Lt_trans; eauto.
+ intros n m p. change (n > m -> m > p -> n > p).
+ Z.swap_greater. intros. now transitivity m.
Qed.
(** * Comparison and opposite *)
-Lemma Zcompare_opp : forall n m:Z, (n ?= m) = (- m ?= - n).
+Lemma Zcompare_opp n m : (n ?= m) = (- m ?= - n).
Proof.
- intros x y; case x; case y; simpl in |- *; auto with arith; intros;
- rewrite <- ZC4; trivial with arith.
+ symmetry. apply Z.compare_opp.
Qed.
-Hint Local Resolve Pcompare_refl.
-
(** * Comparison first-order specification *)
-Lemma Zcompare_Gt_spec :
- forall n m:Z, (n ?= m) = Gt -> exists h : positive, n + - m = Zpos h.
+Lemma Zcompare_Gt_spec n m : (n ?= m) = Gt -> exists h, n + - m = Zpos h.
Proof.
- intros x y; case x; case y;
- [ simpl in |- *; intros H; discriminate H
- | simpl in |- *; intros p H; discriminate H
- | intros p H; exists p; simpl in |- *; auto with arith
- | intros p H; exists p; simpl in |- *; auto with arith
- | intros q p H; exists (p - q)%positive; unfold Zplus, Zopp in |- *;
- unfold Zcompare in H; rewrite H; trivial with arith
- | intros q p H; exists (p + q)%positive; simpl in |- *; trivial with arith
- | simpl in |- *; intros p H; discriminate H
- | simpl in |- *; intros q p H; discriminate H
- | unfold Zcompare in |- *; intros q p; rewrite <- ZC4; intros H;
- exists (q - p)%positive; simpl in |- *; rewrite (ZC1 q p H);
- trivial with arith ].
+ rewrite Z.compare_sub. unfold Z.sub.
+ destruct (n+-m) as [|p|p]; try discriminate. now exists p.
Qed.
(** * Comparison and addition *)
-Lemma weaken_Zcompare_Zplus_compatible :
- (forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m)) ->
- forall n m p:Z, (p + n ?= p + m) = (n ?= m).
+Lemma Zcompare_plus_compat n m p : (p + n ?= p + m) = (n ?= m).
Proof.
- intros H x y z; destruct z;
- [ reflexivity
- | apply H
- | rewrite (Zcompare_opp x y); rewrite Zcompare_opp;
- do 2 rewrite Zopp_plus_distr; rewrite Zopp_neg;
- apply H ].
+ apply Z.add_compare_mono_l.
Qed.
-Hint Local Resolve ZC4.
-
-Lemma weak_Zcompare_Zplus_compatible :
- forall (n m:Z) (p:positive), (Zpos p + n ?= Zpos p + m) = (n ?= m).
-Proof.
- intros x y z; case x; case y; simpl in |- *; auto with arith;
- [ intros p; apply nat_of_P_lt_Lt_compare_complement_morphism; apply ZL17
- | intros p; ElimPcompare z p; intros E; rewrite E; auto with arith;
- apply nat_of_P_gt_Gt_compare_complement_morphism;
- rewrite nat_of_P_minus_morphism;
- [ unfold gt in |- *; apply ZL16 | assumption ]
- | intros p; ElimPcompare z p; intros E; auto with arith;
- apply nat_of_P_gt_Gt_compare_complement_morphism;
- unfold gt in |- *; apply ZL17
- | intros p q; ElimPcompare q p; intros E; rewrite E;
- [ rewrite (Pcompare_Eq_eq q p E); apply Pcompare_refl
- | apply nat_of_P_lt_Lt_compare_complement_morphism;
- do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l;
- apply nat_of_P_lt_Lt_compare_morphism with (1 := E)
- | apply nat_of_P_gt_Gt_compare_complement_morphism; unfold gt in |- *;
- do 2 rewrite nat_of_P_plus_morphism; apply plus_lt_compat_l;
- exact (nat_of_P_gt_Gt_compare_morphism q p E) ]
- | intros p q; ElimPcompare z p; intros E; rewrite E; auto with arith;
- apply nat_of_P_gt_Gt_compare_complement_morphism;
- rewrite nat_of_P_minus_morphism;
- [ unfold gt in |- *; apply lt_trans with (m := nat_of_P z);
- [ apply ZL16 | apply ZL17 ]
- | assumption ]
- | intros p; ElimPcompare z p; intros E; rewrite E; auto with arith;
- simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism;
- rewrite nat_of_P_minus_morphism; [ apply ZL16 | assumption ]
- | intros p q; ElimPcompare z q; intros E; rewrite E; auto with arith;
- simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism;
- rewrite nat_of_P_minus_morphism;
- [ apply lt_trans with (m := nat_of_P z); [ apply ZL16 | apply ZL17 ]
- | assumption ]
- | intros p q; ElimPcompare z q; intros E0; rewrite E0; ElimPcompare z p;
- intros E1; rewrite E1; ElimPcompare q p; intros E2;
- rewrite E2; auto with arith;
- [ absurd ((q ?= p)%positive Eq = Lt);
- [ rewrite <- (Pcompare_Eq_eq z q E0);
- rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z);
- discriminate
- | assumption ]
- | absurd ((q ?= p)%positive Eq = Gt);
- [ rewrite <- (Pcompare_Eq_eq z q E0);
- rewrite <- (Pcompare_Eq_eq z p E1); rewrite (Pcompare_refl z);
- discriminate
- | assumption ]
- | absurd ((z ?= p)%positive Eq = Lt);
- [ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2);
- rewrite (Pcompare_refl q); discriminate
- | assumption ]
- | absurd ((z ?= p)%positive Eq = Lt);
- [ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate
- | assumption ]
- | absurd ((z ?= p)%positive Eq = Gt);
- [ rewrite (Pcompare_Eq_eq z q E0); rewrite <- (Pcompare_Eq_eq q p E2);
- rewrite (Pcompare_refl q); discriminate
- | assumption ]
- | absurd ((z ?= p)%positive Eq = Gt);
- [ rewrite (Pcompare_Eq_eq z q E0); rewrite E2; discriminate
- | assumption ]
- | absurd ((z ?= q)%positive Eq = Lt);
- [ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2);
- rewrite (Pcompare_refl p); discriminate
- | assumption ]
- | absurd ((p ?= q)%positive Eq = Gt);
- [ rewrite <- (Pcompare_Eq_eq z p E1); rewrite E0; discriminate
- | apply ZC2; assumption ]
- | simpl in |- *; rewrite (Pcompare_Eq_eq q p E2);
- rewrite (Pcompare_refl (p - z)); auto with arith
- | simpl in |- *; rewrite <- ZC4;
- apply nat_of_P_gt_Gt_compare_complement_morphism;
- rewrite nat_of_P_minus_morphism;
- [ rewrite nat_of_P_minus_morphism;
- [ unfold gt in |- *; apply plus_lt_reg_l with (p := nat_of_P z);
- rewrite le_plus_minus_r;
- [ rewrite le_plus_minus_r;
- [ apply nat_of_P_lt_Lt_compare_morphism; assumption
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- assumption ]
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- assumption ]
- | apply ZC2; assumption ]
- | apply ZC2; assumption ]
- | simpl in |- *; rewrite <- ZC4;
- apply nat_of_P_lt_Lt_compare_complement_morphism;
- rewrite nat_of_P_minus_morphism;
- [ rewrite nat_of_P_minus_morphism;
- [ apply plus_lt_reg_l with (p := nat_of_P z);
- rewrite le_plus_minus_r;
- [ rewrite le_plus_minus_r;
- [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1;
- assumption
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- assumption ]
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- assumption ]
- | apply ZC2; assumption ]
- | apply ZC2; assumption ]
- | absurd ((z ?= q)%positive Eq = Lt);
- [ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate
- | assumption ]
- | absurd ((q ?= p)%positive Eq = Lt);
- [ cut ((q ?= p)%positive Eq = Gt);
- [ intros E; rewrite E; discriminate
- | apply nat_of_P_gt_Gt_compare_complement_morphism;
- unfold gt in |- *; apply lt_trans with (m := nat_of_P z);
- [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption
- | apply nat_of_P_lt_Lt_compare_morphism; assumption ] ]
- | assumption ]
- | absurd ((z ?= q)%positive Eq = Gt);
- [ rewrite (Pcompare_Eq_eq z p E1); rewrite (Pcompare_Eq_eq q p E2);
- rewrite (Pcompare_refl p); discriminate
- | assumption ]
- | absurd ((z ?= q)%positive Eq = Gt);
- [ rewrite (Pcompare_Eq_eq z p E1); rewrite ZC1;
- [ discriminate | assumption ]
- | assumption ]
- | absurd ((z ?= q)%positive Eq = Gt);
- [ rewrite (Pcompare_Eq_eq q p E2); rewrite E1; discriminate
- | assumption ]
- | absurd ((q ?= p)%positive Eq = Gt);
- [ rewrite ZC1;
- [ discriminate
- | apply nat_of_P_gt_Gt_compare_complement_morphism;
- unfold gt in |- *; apply lt_trans with (m := nat_of_P z);
- [ apply nat_of_P_lt_Lt_compare_morphism; apply ZC1; assumption
- | apply nat_of_P_lt_Lt_compare_morphism; assumption ] ]
- | assumption ]
- | simpl in |- *; rewrite (Pcompare_Eq_eq q p E2); apply Pcompare_refl
- | simpl in |- *; apply nat_of_P_gt_Gt_compare_complement_morphism;
- unfold gt in |- *; rewrite nat_of_P_minus_morphism;
- [ rewrite nat_of_P_minus_morphism;
- [ apply plus_lt_reg_l with (p := nat_of_P p);
- rewrite le_plus_minus_r;
- [ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P q);
- rewrite plus_assoc; rewrite le_plus_minus_r;
- [ rewrite (plus_comm (nat_of_P q)); apply plus_lt_compat_l;
- apply nat_of_P_lt_Lt_compare_morphism;
- assumption
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- apply ZC1; assumption ]
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- apply ZC1; assumption ]
- | assumption ]
- | assumption ]
- | simpl in |- *; apply nat_of_P_lt_Lt_compare_complement_morphism;
- rewrite nat_of_P_minus_morphism;
- [ rewrite nat_of_P_minus_morphism;
- [ apply plus_lt_reg_l with (p := nat_of_P q);
- rewrite le_plus_minus_r;
- [ rewrite plus_comm; apply plus_lt_reg_l with (p := nat_of_P p);
- rewrite plus_assoc; rewrite le_plus_minus_r;
- [ rewrite (plus_comm (nat_of_P p)); apply plus_lt_compat_l;
- apply nat_of_P_lt_Lt_compare_morphism;
- apply ZC1; assumption
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- apply ZC1; assumption ]
- | apply lt_le_weak; apply nat_of_P_lt_Lt_compare_morphism;
- apply ZC1; assumption ]
- | assumption ]
- | assumption ] ] ].
-Qed.
-
-Lemma Zcompare_plus_compat : forall n m p:Z, (p + n ?= p + m) = (n ?= m).
+Lemma Zplus_compare_compat (r:comparison) (n m p q:Z) :
+ (n ?= m) = r -> (p ?= q) = r -> (n + p ?= m + q) = r.
Proof.
- exact (weaken_Zcompare_Zplus_compatible weak_Zcompare_Zplus_compatible).
+ rewrite (Z.compare_sub n), (Z.compare_sub p), (Z.compare_sub (n+p)).
+ unfold Z.sub. rewrite Z.opp_add_distr. rewrite Z.add_shuffle1.
+ destruct (n+-m), (p+-q); simpl; intros; now subst.
Qed.
-Lemma Zplus_compare_compat :
- forall (r:comparison) (n m p q:Z),
- (n ?= m) = r -> (p ?= q) = r -> (n + p ?= m + q) = r.
+Lemma Zcompare_succ_Gt n : (Z.succ n ?= n) = Gt.
Proof.
- intros r x y z t; case r;
- [ intros H1 H2; elim (Zcompare_Eq_iff_eq x y); elim (Zcompare_Eq_iff_eq z t);
- intros H3 H4 H5 H6; rewrite H3;
- [ rewrite H5;
- [ elim (Zcompare_Eq_iff_eq (y + t) (y + t)); auto with arith
- | auto with arith ]
- | auto with arith ]
- | intros H1 H2; elim (Zcompare_Gt_Lt_antisym (y + t) (x + z)); intros H3 H4;
- apply H3; apply Zcompare_Gt_trans with (m := y + z);
- [ rewrite Zcompare_plus_compat; elim (Zcompare_Gt_Lt_antisym t z);
- auto with arith
- | do 2 rewrite <- (Zplus_comm z); rewrite Zcompare_plus_compat;
- elim (Zcompare_Gt_Lt_antisym y x); auto with arith ]
- | intros H1 H2; apply Zcompare_Gt_trans with (m := x + t);
- [ rewrite Zcompare_plus_compat; assumption
- | do 2 rewrite <- (Zplus_comm t); rewrite Zcompare_plus_compat;
- assumption ] ].
+ apply Z.lt_gt. apply Z.lt_succ_diag_r.
Qed.
-Lemma Zcompare_succ_Gt : forall n:Z, (Zsucc n ?= n) = Gt.
+Lemma Zcompare_Gt_not_Lt n m : (n ?= m) = Gt <-> (n ?= m+1) <> Lt.
Proof.
- intro x; unfold Zsucc in |- *; pattern x at 2 in |- *;
- rewrite <- (Zplus_0_r x); rewrite Zcompare_plus_compat;
- reflexivity.
-Qed.
-
-Lemma Zcompare_Gt_not_Lt : forall n m:Z, (n ?= m) = Gt <-> (n ?= m + 1) <> Lt.
-Proof.
- intros x y; split;
- [ intro H; elim_compare x (y + 1);
- [ intro H1; rewrite H1; discriminate
- | intros H1; elim Zcompare_Gt_spec with (1 := H); intros h H2;
- absurd ((nat_of_P h > 0)%nat /\ (nat_of_P h < 1)%nat);
- [ unfold not in |- *; intros H3; elim H3; intros H4 H5;
- absurd (nat_of_P h > 0)%nat;
- [ unfold gt in |- *; apply le_not_lt; apply le_S_n; exact H5
- | assumption ]
- | split;
- [ elim (ZL4 h); intros i H3; rewrite H3; apply gt_Sn_O
- | change (nat_of_P h < nat_of_P 1)%nat in |- *;
- apply nat_of_P_lt_Lt_compare_morphism;
- change ((Zpos h ?= 1) = Lt) in |- *; rewrite <- H2;
- rewrite <- (fun m n:Z => Zcompare_plus_compat m n y);
- rewrite (Zplus_comm x); rewrite Zplus_assoc;
- rewrite Zplus_opp_r; simpl in |- *; exact H1 ] ]
- | intros H1; rewrite H1; discriminate ]
- | intros H; elim_compare x (y + 1);
- [ intros H1; elim (Zcompare_Eq_iff_eq x (y + 1)); intros H2 H3;
- rewrite (H2 H1); exact (Zcompare_succ_Gt y)
- | intros H1; absurd ((x ?= y + 1) = Lt); assumption
- | intros H1; apply Zcompare_Gt_trans with (m := Zsucc y);
- [ exact H1 | exact (Zcompare_succ_Gt y) ] ] ].
+ change (n > m <-> n >= m+1). Z.swap_greater. symmetry. apply Z.le_succ_l.
Qed.
(** * Successor and comparison *)
-Lemma Zcompare_succ_compat : forall n m:Z, (Zsucc n ?= Zsucc m) = (n ?= m).
+Lemma Zcompare_succ_compat n m : (Z.succ n ?= Z.succ m) = (n ?= m).
Proof.
- intros n m; unfold Zsucc in |- *; do 2 rewrite (fun t:Z => Zplus_comm t 1);
- rewrite Zcompare_plus_compat; auto with arith.
+ rewrite <- 2 Z.add_1_l. apply Zcompare_plus_compat.
Qed.
(** * Multiplication and comparison *)
@@ -389,28 +93,24 @@ Qed.
Lemma Zcompare_mult_compat :
forall (p:positive) (n m:Z), (Zpos p * n ?= Zpos p * m) = (n ?= m).
Proof.
- intros x; induction x as [p H| p H| ];
- [ intros y z; cut (Zpos (xI p) = Zpos p + Zpos p + 1);
- [ intros E; rewrite E; do 4 rewrite Zmult_plus_distr_l;
- do 2 rewrite Zmult_1_l; apply Zplus_compare_compat;
- [ apply Zplus_compare_compat; apply H | trivial with arith ]
- | simpl in |- *; rewrite (Pplus_diag p); trivial with arith ]
- | intros y z; cut (Zpos (xO p) = Zpos p + Zpos p);
- [ intros E; rewrite E; do 2 rewrite Zmult_plus_distr_l;
- apply Zplus_compare_compat; apply H
- | simpl in |- *; rewrite (Pplus_diag p); trivial with arith ]
- | intros y z; do 2 rewrite Zmult_1_l; trivial with arith ].
+ intros p [|n|n] [|m|m]; simpl; trivial; now rewrite Pos.mul_compare_mono_l.
Qed.
+Lemma Zmult_compare_compat_l n m p:
+ p > 0 -> (n ?= m) = (p * n ?= p * m).
+Proof.
+ intros; destruct p; try discriminate.
+ symmetry. apply Zcompare_mult_compat.
+Qed.
-(** * Reverting [x ?= y] to trichotomy *)
-
-Lemma rename :
- forall (A:Type) (P:A -> Prop) (x:A), (forall y:A, x = y -> P y) -> P x.
+Lemma Zmult_compare_compat_r n m p :
+ p > 0 -> (n ?= m) = (n * p ?= m * p).
Proof.
- auto with arith.
+ intros; rewrite 2 (Zmult_comm _ p); now apply Zmult_compare_compat_l.
Qed.
+(** * Relating [x ?= y] to [=], [<=], [<], [>=] or [>] *)
+
Lemma Zcompare_elim :
forall (c1 c2 c3:Prop) (n m:Z),
(n = m -> c1) ->
@@ -421,11 +121,7 @@ Lemma Zcompare_elim :
| Gt => c3
end.
Proof.
- intros c1 c2 c3 x y; intros.
- apply rename with (x := x ?= y); intro r; elim r;
- [ intro; apply H; apply (Zcompare_Eq_eq x y); assumption
- | unfold Zlt in H0; assumption
- | unfold Zgt in H1; assumption ].
+ intros. case Z.compare_spec; trivial. now Z.swap_greater.
Qed.
Lemma Zcompare_eq_case :
@@ -436,26 +132,9 @@ Lemma Zcompare_eq_case :
| Gt => c3
end.
Proof.
- intros c1 c2 c3 x y; intros.
- rewrite H0; rewrite Zcompare_refl.
- assumption.
+ intros. subst. now rewrite Z.compare_refl.
Qed.
-(** * Decompose an egality between two [?=] relations into 3 implications *)
-
-Lemma Zcompare_egal_dec :
- forall n m p q:Z,
- (n < m -> p < q) ->
- ((n ?= m) = Eq -> (p ?= q) = Eq) ->
- (n > m -> p > q) -> (n ?= m) = (p ?= q).
-Proof.
- intros x1 y1 x2 y2.
- unfold Zgt in |- *; unfold Zlt in |- *; case (x1 ?= y1); case (x2 ?= y2);
- auto with arith; symmetry in |- *; auto with arith.
-Qed.
-
-(** * Relating [x ?= y] to [Zle], [Zlt], [Zge] or [Zgt] *)
-
Lemma Zle_compare :
forall n m:Z,
n <= m -> match n ?= m with
@@ -464,7 +143,7 @@ Lemma Zle_compare :
| Gt => False
end.
Proof.
- intros x y; unfold Zle in |- *; elim (x ?= y); auto with arith.
+ intros. case Z.compare_spec; trivial; Z.order.
Qed.
Lemma Zlt_compare :
@@ -475,8 +154,7 @@ Lemma Zlt_compare :
| Gt => False
end.
Proof.
- intros x y; unfold Zlt in |- *; elim (x ?= y); intros;
- discriminate || trivial with arith.
+ intros x y H; now rewrite H.
Qed.
Lemma Zge_compare :
@@ -487,7 +165,7 @@ Lemma Zge_compare :
| Gt => True
end.
Proof.
- intros x y; unfold Zge in |- *; elim (x ?= y); auto with arith.
+ intros. now case Z.compare_spec.
Qed.
Lemma Zgt_compare :
@@ -498,26 +176,23 @@ Lemma Zgt_compare :
| Gt => True
end.
Proof.
- intros x y; unfold Zgt in |- *; elim (x ?= y); intros;
- discriminate || trivial with arith.
+ intros x y H; now rewrite H.
Qed.
-(*********************)
-(** * Other properties *)
+(** Compatibility notations *)
-Lemma Zmult_compare_compat_l :
- forall n m p:Z, p > 0 -> (n ?= m) = (p * n ?= p * m).
-Proof.
- intros x y z H; destruct z.
- discriminate H.
- rewrite Zcompare_mult_compat; reflexivity.
- discriminate H.
-Qed.
-
-Lemma Zmult_compare_compat_r :
- forall n m p:Z, p > 0 -> (n ?= m) = (n * p ?= m * p).
-Proof.
- intros x y z H; rewrite (Zmult_comm x z); rewrite (Zmult_comm y z);
- apply Zmult_compare_compat_l; assumption.
-Qed.
+Notation Zcompare_refl := Z.compare_refl (only parsing).
+Notation Zcompare_Eq_eq := Z.compare_eq (only parsing).
+Notation Zcompare_Eq_iff_eq := Z.compare_eq_iff (only parsing).
+Notation Zcompare_spec := Z.compare_spec (only parsing).
+Notation Zmin_l := Z.min_l (only parsing).
+Notation Zmin_r := Z.min_r (only parsing).
+Notation Zmax_l := Z.max_l (only parsing).
+Notation Zmax_r := Z.max_r (only parsing).
+Notation Zabs_eq := Z.abs_eq (only parsing).
+Notation Zabs_non_eq := Z.abs_neq (only parsing).
+Notation Zsgn_0 := Z.sgn_null (only parsing).
+Notation Zsgn_1 := Z.sgn_pos (only parsing).
+Notation Zsgn_m1 := Z.sgn_neg (only parsing).
+(** Not kept: Zcompare_egal_dec *)