summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zbool.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zbool.v')
-rw-r--r--theories/ZArith/Zbool.v186
1 files changed, 186 insertions, 0 deletions
diff --git a/theories/ZArith/Zbool.v b/theories/ZArith/Zbool.v
new file mode 100644
index 00000000..bb8abef4
--- /dev/null
+++ b/theories/ZArith/Zbool.v
@@ -0,0 +1,186 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* $Id: Zbool.v,v 1.4.2.1 2004/07/16 19:31:21 herbelin Exp $ *)
+
+Require Import BinInt.
+Require Import Zeven.
+Require Import Zorder.
+Require Import Zcompare.
+Require Import ZArith_dec.
+Require Import Sumbool.
+
+(** The decidability of equality and order relations over
+ type [Z] give some boolean functions with the adequate specification. *)
+
+Definition Z_lt_ge_bool (x y:Z) := bool_of_sumbool (Z_lt_ge_dec x y).
+Definition Z_ge_lt_bool (x y:Z) := bool_of_sumbool (Z_ge_lt_dec x y).
+
+Definition Z_le_gt_bool (x y:Z) := bool_of_sumbool (Z_le_gt_dec x y).
+Definition Z_gt_le_bool (x y:Z) := bool_of_sumbool (Z_gt_le_dec x y).
+
+Definition Z_eq_bool (x y:Z) := bool_of_sumbool (Z_eq_dec x y).
+Definition Z_noteq_bool (x y:Z) := bool_of_sumbool (Z_noteq_dec x y).
+
+Definition Zeven_odd_bool (x:Z) := bool_of_sumbool (Zeven_odd_dec x).
+
+(**********************************************************************)
+(** Boolean comparisons of binary integers *)
+
+Definition Zle_bool (x y:Z) :=
+ match (x ?= y)%Z with
+ | Gt => false
+ | _ => true
+ end.
+Definition Zge_bool (x y:Z) :=
+ match (x ?= y)%Z with
+ | Lt => false
+ | _ => true
+ end.
+Definition Zlt_bool (x y:Z) :=
+ match (x ?= y)%Z with
+ | Lt => true
+ | _ => false
+ end.
+Definition Zgt_bool (x y:Z) :=
+ match (x ?= y)%Z with
+ | Gt => true
+ | _ => false
+ end.
+Definition Zeq_bool (x y:Z) :=
+ match (x ?= y)%Z with
+ | Eq => true
+ | _ => false
+ end.
+Definition Zneq_bool (x y:Z) :=
+ match (x ?= y)%Z with
+ | Eq => false
+ | _ => true
+ end.
+
+Lemma Zle_cases :
+ forall n m:Z, if Zle_bool n m then (n <= m)%Z else (n > m)%Z.
+Proof.
+intros x y; unfold Zle_bool, Zle, Zgt in |- *.
+case (x ?= y)%Z; auto; discriminate.
+Qed.
+
+Lemma Zlt_cases :
+ forall n m:Z, if Zlt_bool n m then (n < m)%Z else (n >= m)%Z.
+Proof.
+intros x y; unfold Zlt_bool, Zlt, Zge in |- *.
+case (x ?= y)%Z; auto; discriminate.
+Qed.
+
+Lemma Zge_cases :
+ forall n m:Z, if Zge_bool n m then (n >= m)%Z else (n < m)%Z.
+Proof.
+intros x y; unfold Zge_bool, Zge, Zlt in |- *.
+case (x ?= y)%Z; auto; discriminate.
+Qed.
+
+Lemma Zgt_cases :
+ forall n m:Z, if Zgt_bool n m then (n > m)%Z else (n <= m)%Z.
+Proof.
+intros x y; unfold Zgt_bool, Zgt, Zle in |- *.
+case (x ?= y)%Z; auto; discriminate.
+Qed.
+
+(** Lemmas on [Zle_bool] used in contrib/graphs *)
+
+Lemma Zle_bool_imp_le : forall n m:Z, Zle_bool n m = true -> (n <= m)%Z.
+Proof.
+ unfold Zle_bool, Zle in |- *. intros x y. unfold not in |- *.
+ case (x ?= y)%Z; intros; discriminate.
+Qed.
+
+Lemma Zle_imp_le_bool : forall n m:Z, (n <= m)%Z -> Zle_bool n m = true.
+Proof.
+ unfold Zle, Zle_bool in |- *. intros x y. case (x ?= y)%Z; trivial. intro. elim (H (refl_equal _)).
+Qed.
+
+Lemma Zle_bool_refl : forall n:Z, Zle_bool n n = true.
+Proof.
+ intro. apply Zle_imp_le_bool. apply Zeq_le. reflexivity.
+Qed.
+
+Lemma Zle_bool_antisym :
+ forall n m:Z, Zle_bool n m = true -> Zle_bool m n = true -> n = m.
+Proof.
+ intros. apply Zle_antisym. apply Zle_bool_imp_le. assumption.
+ apply Zle_bool_imp_le. assumption.
+Qed.
+
+Lemma Zle_bool_trans :
+ forall n m p:Z,
+ Zle_bool n m = true -> Zle_bool m p = true -> Zle_bool n p = true.
+Proof.
+ intros x y z; intros. apply Zle_imp_le_bool. apply Zle_trans with (m := y). apply Zle_bool_imp_le. assumption.
+ apply Zle_bool_imp_le. assumption.
+Qed.
+
+Definition Zle_bool_total :
+ forall x y:Z, {Zle_bool x y = true} + {Zle_bool y x = true}.
+Proof.
+ intros x y; intros. unfold Zle_bool in |- *. cut ((x ?= y)%Z = Gt <-> (y ?= x)%Z = Lt).
+ case (x ?= y)%Z. left. reflexivity.
+ left. reflexivity.
+ right. rewrite (proj1 H (refl_equal _)). reflexivity.
+ apply Zcompare_Gt_Lt_antisym.
+Defined.
+
+Lemma Zle_bool_plus_mono :
+ forall n m p q:Z,
+ Zle_bool n m = true ->
+ Zle_bool p q = true -> Zle_bool (n + p) (m + q) = true.
+Proof.
+ intros. apply Zle_imp_le_bool. apply Zplus_le_compat. apply Zle_bool_imp_le. assumption.
+ apply Zle_bool_imp_le. assumption.
+Qed.
+
+Lemma Zone_pos : Zle_bool 1 0 = false.
+Proof.
+ reflexivity.
+Qed.
+
+Lemma Zone_min_pos : forall n:Z, Zle_bool n 0 = false -> Zle_bool 1 n = true.
+Proof.
+ intros x; intros. apply Zle_imp_le_bool. change (Zsucc 0 <= x)%Z in |- *. apply Zgt_le_succ. generalize H.
+ unfold Zle_bool, Zgt in |- *. case (x ?= 0)%Z. intro H0. discriminate H0.
+ intro H0. discriminate H0.
+ reflexivity.
+Qed.
+
+
+ Lemma Zle_is_le_bool : forall n m:Z, (n <= m)%Z <-> Zle_bool n m = true.
+ Proof.
+ intros. split. intro. apply Zle_imp_le_bool. assumption.
+ intro. apply Zle_bool_imp_le. assumption.
+ Qed.
+
+ Lemma Zge_is_le_bool : forall n m:Z, (n >= m)%Z <-> Zle_bool m n = true.
+ Proof.
+ intros. split. intro. apply Zle_imp_le_bool. apply Zge_le. assumption.
+ intro. apply Zle_ge. apply Zle_bool_imp_le. assumption.
+ Qed.
+
+ Lemma Zlt_is_le_bool :
+ forall n m:Z, (n < m)%Z <-> Zle_bool n (m - 1) = true.
+ Proof.
+ intros x y. split. intro. apply Zle_imp_le_bool. apply Zlt_succ_le. rewrite (Zsucc_pred y) in H.
+ assumption.
+ intro. rewrite (Zsucc_pred y). apply Zle_lt_succ. apply Zle_bool_imp_le. assumption.
+ Qed.
+
+ Lemma Zgt_is_le_bool :
+ forall n m:Z, (n > m)%Z <-> Zle_bool m (n - 1) = true.
+ Proof.
+ intros x y. apply iff_trans with (y < x)%Z. split. exact (Zgt_lt x y).
+ exact (Zlt_gt y x).
+ exact (Zlt_is_le_bool y x).
+ Qed.