summaryrefslogtreecommitdiff
path: root/theories/ZArith/Zabs.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/Zabs.v')
-rw-r--r--theories/ZArith/Zabs.v224
1 files changed, 52 insertions, 172 deletions
diff --git a/theories/ZArith/Zabs.v b/theories/ZArith/Zabs.v
index 0f6e62b7..23473e93 100644
--- a/theories/ZArith/Zabs.v
+++ b/theories/ZArith/Zabs.v
@@ -1,226 +1,106 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Zabs.v 14641 2011-11-06 11:59:10Z herbelin $ i*)
-(** Binary Integers (Pierre Crégut (CNET, Lannion, France) *)
+(** Binary Integers : properties of absolute value *)
+(** Initial author : Pierre Crégut (CNET, Lannion, France) *)
+
+(** THIS FILE IS DEPRECATED.
+ It is now almost entirely made of compatibility formulations
+ for results already present in BinInt.Z. *)
Require Import Arith_base.
Require Import BinPos.
Require Import BinInt.
+Require Import Zcompare.
Require Import Zorder.
-Require Import Zmax.
Require Import Znat.
Require Import ZArith_dec.
-Open Local Scope Z_scope.
+Local Open Scope Z_scope.
(**********************************************************************)
(** * Properties of absolute value *)
-Lemma Zabs_eq : forall n:Z, 0 <= n -> Zabs n = n.
-Proof.
- intro x; destruct x; auto with arith.
- compute in |- *; intros; absurd (Gt = Gt); trivial with arith.
-Qed.
-
-Lemma Zabs_non_eq : forall n:Z, n <= 0 -> Zabs n = - n.
-Proof.
- intro x; destruct x; auto with arith.
- compute in |- *; intros; absurd (Gt = Gt); trivial with arith.
-Qed.
-
-Theorem Zabs_Zopp : forall n:Z, Zabs (- n) = Zabs n.
-Proof.
- intros z; case z; simpl in |- *; auto.
-Qed.
+Notation Zabs_eq := Z.abs_eq (only parsing).
+Notation Zabs_non_eq := Z.abs_neq (only parsing).
+Notation Zabs_Zopp := Z.abs_opp (only parsing).
+Notation Zabs_pos := Z.abs_nonneg (only parsing).
+Notation Zabs_involutive := Z.abs_involutive (only parsing).
+Notation Zabs_eq_case := Z.abs_eq_cases (only parsing).
+Notation Zabs_triangle := Z.abs_triangle (only parsing).
+Notation Zsgn_Zabs := Z.sgn_abs (only parsing).
+Notation Zabs_Zsgn := Z.abs_sgn (only parsing).
+Notation Zabs_Zmult := Z.abs_mul (only parsing).
+Notation Zabs_square := Z.abs_square (only parsing).
(** * Proving a property of the absolute value by cases *)
Lemma Zabs_ind :
forall (P:Z -> Prop) (n:Z),
- (n >= 0 -> P n) -> (n <= 0 -> P (- n)) -> P (Zabs n).
+ (n >= 0 -> P n) -> (n <= 0 -> P (- n)) -> P (Z.abs n).
Proof.
- intros P x H H0; elim (Z_lt_ge_dec x 0); intro.
- assert (x <= 0). apply Zlt_le_weak; assumption.
- rewrite Zabs_non_eq. apply H0. assumption. assumption.
- rewrite Zabs_eq. apply H; assumption. apply Zge_le. assumption.
+ intros. apply Z.abs_case_strong; Z.swap_greater; trivial.
+ intros x y Hx; now subst.
Qed.
-Theorem Zabs_intro : forall P (n:Z), P (- n) -> P n -> P (Zabs n).
+Theorem Zabs_intro : forall P (n:Z), P (- n) -> P n -> P (Z.abs n).
Proof.
- intros P z; case z; simpl in |- *; auto.
+ now destruct n.
Qed.
-Definition Zabs_dec : forall x:Z, {x = Zabs x} + {x = - Zabs x}.
+Definition Zabs_dec : forall x:Z, {x = Z.abs x} + {x = - Z.abs x}.
Proof.
- intro x; destruct x; auto with arith.
+ destruct x; auto.
Defined.
-Lemma Zabs_pos : forall n:Z, 0 <= Zabs n.
- intro x; destruct x; auto with arith; compute in |- *; intros H; inversion H.
-Qed.
-
-Lemma Zabs_involutive : forall x:Z, Zabs (Zabs x) = Zabs x.
-Proof.
- intros; apply Zabs_eq; apply Zabs_pos.
-Qed.
-
-Theorem Zabs_eq_case : forall n m:Z, Zabs n = Zabs m -> n = m \/ n = - m.
-Proof.
- intros z1 z2; case z1; case z2; simpl in |- *; auto;
- try (intros; discriminate); intros p1 p2 H1; injection H1;
- (intros H2; rewrite H2); auto.
-Qed.
-
-Lemma Zabs_spec : forall x:Z,
- 0 <= x /\ Zabs x = x \/
- 0 > x /\ Zabs x = -x.
-Proof.
- intros; unfold Zabs, Zle, Zgt; destruct x; simpl; intuition discriminate.
-Qed.
-
-(** * Triangular inequality *)
-
-Hint Local Resolve Zle_neg_pos: zarith.
-
-Theorem Zabs_triangle : forall n m:Z, Zabs (n + m) <= Zabs n + Zabs m.
-Proof.
- intros z1 z2; case z1; case z2; try (simpl in |- *; auto with zarith; fail).
- intros p1 p2;
- apply Zabs_intro with (P := fun x => x <= Zabs (Zpos p2) + Zabs (Zneg p1));
- try rewrite Zopp_plus_distr; auto with zarith.
- apply Zplus_le_compat; simpl in |- *; auto with zarith.
- apply Zplus_le_compat; simpl in |- *; auto with zarith.
- intros p1 p2;
- apply Zabs_intro with (P := fun x => x <= Zabs (Zpos p2) + Zabs (Zneg p1));
- try rewrite Zopp_plus_distr; auto with zarith.
- apply Zplus_le_compat; simpl in |- *; auto with zarith.
- apply Zplus_le_compat; simpl in |- *; auto with zarith.
-Qed.
-
-(** * Absolute value and multiplication *)
-
-Lemma Zsgn_Zabs : forall n:Z, n * Zsgn n = Zabs n.
-Proof.
- intro x; destruct x; rewrite Zmult_comm; auto with arith.
-Qed.
-
-Lemma Zabs_Zsgn : forall n:Z, Zabs n * Zsgn n = n.
-Proof.
- intro x; destruct x; rewrite Zmult_comm; auto with arith.
-Qed.
-
-Theorem Zabs_Zmult : forall n m:Z, Zabs (n * m) = Zabs n * Zabs m.
-Proof.
- intros z1 z2; case z1; case z2; simpl in |- *; auto.
-Qed.
-
-Theorem Zabs_square : forall a, Zabs a * Zabs a = a * a.
+Lemma Zabs_spec x :
+ 0 <= x /\ Z.abs x = x \/
+ 0 > x /\ Z.abs x = -x.
Proof.
- destruct a; simpl; auto.
-Qed.
-
-(** * Results about absolute value in nat. *)
-
-Theorem inj_Zabs_nat : forall z:Z, Z_of_nat (Zabs_nat z) = Zabs z.
-Proof.
- destruct z; simpl; auto; symmetry; apply Zpos_eq_Z_of_nat_o_nat_of_P.
-Qed.
-
-Theorem Zabs_nat_Z_of_nat: forall n, Zabs_nat (Z_of_nat n) = n.
-Proof.
- destruct n; simpl; auto.
- apply nat_of_P_o_P_of_succ_nat_eq_succ.
-Qed.
-
-Lemma Zabs_nat_mult: forall n m:Z, Zabs_nat (n*m) = (Zabs_nat n * Zabs_nat m)%nat.
-Proof.
- intros; apply inj_eq_rev.
- rewrite inj_mult; repeat rewrite inj_Zabs_nat; apply Zabs_Zmult.
-Qed.
-
-Lemma Zabs_nat_Zsucc:
- forall p, 0 <= p -> Zabs_nat (Zsucc p) = S (Zabs_nat p).
-Proof.
- intros; apply inj_eq_rev.
- rewrite inj_S; repeat rewrite inj_Zabs_nat, Zabs_eq; auto with zarith.
-Qed.
-
-Lemma Zabs_nat_Zplus:
- forall x y, 0<=x -> 0<=y -> Zabs_nat (x+y) = (Zabs_nat x + Zabs_nat y)%nat.
-Proof.
- intros; apply inj_eq_rev.
- rewrite inj_plus; repeat rewrite inj_Zabs_nat, Zabs_eq; auto with zarith.
- apply Zplus_le_0_compat; auto.
-Qed.
-
-Lemma Zabs_nat_Zminus:
- forall x y, 0 <= x <= y -> Zabs_nat (y - x) = (Zabs_nat y - Zabs_nat x)%nat.
-Proof.
- intros x y (H,H').
- assert (0 <= y) by (apply Zle_trans with x; auto).
- assert (0 <= y-x) by (apply Zle_minus_le_0; auto).
- apply inj_eq_rev.
- rewrite inj_minus; repeat rewrite inj_Zabs_nat, Zabs_eq; auto.
- rewrite Zmax_right; auto.
-Qed.
-
-Lemma Zabs_nat_le :
- forall n m:Z, 0 <= n <= m -> (Zabs_nat n <= Zabs_nat m)%nat.
-Proof.
- intros n m (H,H'); apply inj_le_rev.
- repeat rewrite inj_Zabs_nat, Zabs_eq; auto.
- apply Zle_trans with n; auto.
-Qed.
-
-Lemma Zabs_nat_lt :
- forall n m:Z, 0 <= n < m -> (Zabs_nat n < Zabs_nat m)%nat.
-Proof.
- intros n m (H,H'); apply inj_lt_rev.
- repeat rewrite inj_Zabs_nat, Zabs_eq; auto.
- apply Zlt_le_weak; apply Zle_lt_trans with n; auto.
+ Z.swap_greater. apply Z.abs_spec.
Qed.
(** * Some results about the sign function. *)
-Lemma Zsgn_Zmult : forall a b, Zsgn (a*b) = Zsgn a * Zsgn b.
-Proof.
- destruct a; destruct b; simpl; auto.
-Qed.
-
-Lemma Zsgn_Zopp : forall a, Zsgn (-a) = - Zsgn a.
-Proof.
- destruct a; simpl; auto.
-Qed.
+Notation Zsgn_Zmult := Z.sgn_mul (only parsing).
+Notation Zsgn_Zopp := Z.sgn_opp (only parsing).
+Notation Zsgn_pos := Z.sgn_pos_iff (only parsing).
+Notation Zsgn_neg := Z.sgn_neg_iff (only parsing).
+Notation Zsgn_null := Z.sgn_null_iff (only parsing).
(** A characterization of the sign function: *)
-Lemma Zsgn_spec : forall x:Z,
+Lemma Zsgn_spec x :
0 < x /\ Zsgn x = 1 \/
0 = x /\ Zsgn x = 0 \/
0 > x /\ Zsgn x = -1.
Proof.
- intros; unfold Zsgn, Zle, Zgt; destruct x; compute; intuition.
+ intros. Z.swap_greater. apply Z.sgn_spec.
Qed.
-Lemma Zsgn_pos : forall x:Z, Zsgn x = 1 <-> 0 < x.
-Proof.
- destruct x; now intuition.
-Qed.
+(** Compatibility *)
-Lemma Zsgn_neg : forall x:Z, Zsgn x = -1 <-> x < 0.
+Notation inj_Zabs_nat := Zabs2Nat.id_abs (only parsing).
+Notation Zabs_nat_Z_of_nat := Zabs2Nat.id (only parsing).
+Notation Zabs_nat_mult := Zabs2Nat.inj_mul (only parsing).
+Notation Zabs_nat_Zsucc := Zabs2Nat.inj_succ (only parsing).
+Notation Zabs_nat_Zplus := Zabs2Nat.inj_add (only parsing).
+Notation Zabs_nat_Zminus := (fun n m => Zabs2Nat.inj_sub m n) (only parsing).
+Notation Zabs_nat_compare := Zabs2Nat.inj_compare (only parsing).
+
+Lemma Zabs_nat_le n m : 0 <= n <= m -> (Z.abs_nat n <= Z.abs_nat m)%nat.
Proof.
- destruct x; now intuition.
+ intros (H,H'). apply Zabs2Nat.inj_le; trivial. now transitivity n.
Qed.
-Lemma Zsgn_null : forall x:Z, Zsgn x = 0 <-> x = 0.
+Lemma Zabs_nat_lt n m : 0 <= n < m -> (Zabs_nat n < Zabs_nat m)%nat.
Proof.
- destruct x; now intuition.
+ intros (H,H'). apply Zabs2Nat.inj_lt; trivial.
+ transitivity n; trivial. now apply Z.lt_le_incl.
Qed.
-