diff options
Diffstat (limited to 'theories/ZArith/ZOrderedType.v')
-rw-r--r-- | theories/ZArith/ZOrderedType.v | 60 |
1 files changed, 60 insertions, 0 deletions
diff --git a/theories/ZArith/ZOrderedType.v b/theories/ZArith/ZOrderedType.v new file mode 100644 index 00000000..570e2a4d --- /dev/null +++ b/theories/ZArith/ZOrderedType.v @@ -0,0 +1,60 @@ +(************************************************************************) +(* v * The Coq Proof Assistant / The Coq Development Team *) +(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *) +(* \VV/ **************************************************************) +(* // * This file is distributed under the terms of the *) +(* * GNU Lesser General Public License Version 2.1 *) +(************************************************************************) + +Require Import BinInt Zcompare Zorder Zbool ZArith_dec + Equalities Orders OrdersTac. + +Local Open Scope Z_scope. + +(** * DecidableType structure for binary integers *) + +Module Z_as_UBE <: UsualBoolEq. + Definition t := Z. + Definition eq := @eq Z. + Definition eqb := Zeq_bool. + Definition eqb_eq x y := iff_sym (Zeq_is_eq_bool x y). +End Z_as_UBE. + +Module Z_as_DT <: UsualDecidableTypeFull := Make_UDTF Z_as_UBE. + +(** Note that the last module fulfills by subtyping many other + interfaces, such as [DecidableType] or [EqualityType]. *) + + +(** * OrderedType structure for binary integers *) + +Module Z_as_OT <: OrderedTypeFull. + Include Z_as_DT. + Definition lt := Zlt. + Definition le := Zle. + Definition compare := Zcompare. + + Instance lt_strorder : StrictOrder Zlt. + Proof. split; [ exact Zlt_irrefl | exact Zlt_trans ]. Qed. + + Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) Zlt. + Proof. repeat red; intros; subst; auto. Qed. + + Definition le_lteq := Zle_lt_or_eq_iff. + Definition compare_spec := Zcompare_spec. + +End Z_as_OT. + +(** Note that [Z_as_OT] can also be seen as a [UsualOrderedType] + and a [OrderedType] (and also as a [DecidableType]). *) + + + +(** * An [order] tactic for integers *) + +Module ZOrder := OTF_to_OrderTac Z_as_OT. +Ltac z_order := ZOrder.order. + +(** Note that [z_order] is domain-agnostic: it will not prove + [1<=2] or [x<=x+x], but rather things like [x<=y -> y<=x -> x=y]. *) + |