summaryrefslogtreecommitdiff
path: root/theories/ZArith/ZOrderedType.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/ZArith/ZOrderedType.v')
-rw-r--r--theories/ZArith/ZOrderedType.v60
1 files changed, 60 insertions, 0 deletions
diff --git a/theories/ZArith/ZOrderedType.v b/theories/ZArith/ZOrderedType.v
new file mode 100644
index 00000000..570e2a4d
--- /dev/null
+++ b/theories/ZArith/ZOrderedType.v
@@ -0,0 +1,60 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import BinInt Zcompare Zorder Zbool ZArith_dec
+ Equalities Orders OrdersTac.
+
+Local Open Scope Z_scope.
+
+(** * DecidableType structure for binary integers *)
+
+Module Z_as_UBE <: UsualBoolEq.
+ Definition t := Z.
+ Definition eq := @eq Z.
+ Definition eqb := Zeq_bool.
+ Definition eqb_eq x y := iff_sym (Zeq_is_eq_bool x y).
+End Z_as_UBE.
+
+Module Z_as_DT <: UsualDecidableTypeFull := Make_UDTF Z_as_UBE.
+
+(** Note that the last module fulfills by subtyping many other
+ interfaces, such as [DecidableType] or [EqualityType]. *)
+
+
+(** * OrderedType structure for binary integers *)
+
+Module Z_as_OT <: OrderedTypeFull.
+ Include Z_as_DT.
+ Definition lt := Zlt.
+ Definition le := Zle.
+ Definition compare := Zcompare.
+
+ Instance lt_strorder : StrictOrder Zlt.
+ Proof. split; [ exact Zlt_irrefl | exact Zlt_trans ]. Qed.
+
+ Instance lt_compat : Proper (Logic.eq==>Logic.eq==>iff) Zlt.
+ Proof. repeat red; intros; subst; auto. Qed.
+
+ Definition le_lteq := Zle_lt_or_eq_iff.
+ Definition compare_spec := Zcompare_spec.
+
+End Z_as_OT.
+
+(** Note that [Z_as_OT] can also be seen as a [UsualOrderedType]
+ and a [OrderedType] (and also as a [DecidableType]). *)
+
+
+
+(** * An [order] tactic for integers *)
+
+Module ZOrder := OTF_to_OrderTac Z_as_OT.
+Ltac z_order := ZOrder.order.
+
+(** Note that [z_order] is domain-agnostic: it will not prove
+ [1<=2] or [x<=x+x], but rather things like [x<=y -> y<=x -> x=y]. *)
+