summaryrefslogtreecommitdiff
path: root/theories/Wellfounded/Lexicographic_Product.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Wellfounded/Lexicographic_Product.v')
-rw-r--r--theories/Wellfounded/Lexicographic_Product.v192
1 files changed, 192 insertions, 0 deletions
diff --git a/theories/Wellfounded/Lexicographic_Product.v b/theories/Wellfounded/Lexicographic_Product.v
new file mode 100644
index 00000000..8ac178fc
--- /dev/null
+++ b/theories/Wellfounded/Lexicographic_Product.v
@@ -0,0 +1,192 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Lexicographic_Product.v,v 1.12.2.1 2004/07/16 19:31:19 herbelin Exp $ i*)
+
+(** Authors: Bruno Barras, Cristina Cornes *)
+
+Require Import Eqdep.
+Require Import Relation_Operators.
+Require Import Transitive_Closure.
+
+(** From : Constructing Recursion Operators in Type Theory
+ L. Paulson JSC (1986) 2, 325-355 *)
+
+Section WfLexicographic_Product.
+Variable A : Set.
+Variable B : A -> Set.
+Variable leA : A -> A -> Prop.
+Variable leB : forall x:A, B x -> B x -> Prop.
+
+Notation LexProd := (lexprod A B leA leB).
+
+Hint Resolve t_step Acc_clos_trans wf_clos_trans.
+
+Lemma acc_A_B_lexprod :
+ forall x:A,
+ Acc leA x ->
+ (forall x0:A, clos_trans A leA x0 x -> well_founded (leB x0)) ->
+ forall y:B x, Acc (leB x) y -> Acc LexProd (existS B x y).
+Proof.
+ induction 1 as [x _ IHAcc]; intros H2 y.
+ induction 1 as [x0 H IHAcc0]; intros.
+ apply Acc_intro.
+ destruct y as [x2 y1]; intro H6.
+ simple inversion H6; intro.
+ cut (leA x2 x); intros.
+ apply IHAcc; auto with sets.
+ intros.
+ apply H2.
+ apply t_trans with x2; auto with sets.
+
+ red in H2.
+ apply H2.
+ auto with sets.
+
+ injection H1.
+ destruct 2.
+ injection H3.
+ destruct 2; auto with sets.
+
+ rewrite <- H1.
+ injection H3; intros _ Hx1.
+ subst x1.
+ apply IHAcc0.
+ elim inj_pair2 with A B x y' x0; assumption.
+Qed.
+
+Theorem wf_lexprod :
+ well_founded leA ->
+ (forall x:A, well_founded (leB x)) -> well_founded LexProd.
+Proof.
+ intros wfA wfB; unfold well_founded in |- *.
+ destruct a.
+ apply acc_A_B_lexprod; auto with sets; intros.
+ red in wfB.
+ auto with sets.
+Qed.
+
+
+End WfLexicographic_Product.
+
+
+Section Wf_Symmetric_Product.
+ Variable A : Set.
+ Variable B : Set.
+ Variable leA : A -> A -> Prop.
+ Variable leB : B -> B -> Prop.
+
+ Notation Symprod := (symprod A B leA leB).
+
+(*i
+ Local sig_prod:=
+ [x:A*B]<{_:A&B}>Case x of [a:A][b:B](existS A [_:A]B a b) end.
+
+Lemma incl_sym_lexprod: (included (A*B) Symprod
+ (R_o_f (A*B) {_:A&B} sig_prod (lexprod A [_:A]B leA [_:A]leB))).
+Proof.
+ Red.
+ Induction x.
+ (Induction y1;Intros).
+ Red.
+ Unfold sig_prod .
+ Inversion_clear H.
+ (Apply left_lex;Auto with sets).
+
+ (Apply right_lex;Auto with sets).
+Qed.
+i*)
+
+ Lemma Acc_symprod :
+ forall x:A, Acc leA x -> forall y:B, Acc leB y -> Acc Symprod (x, y).
+ Proof.
+ induction 1 as [x _ IHAcc]; intros y H2.
+ induction H2 as [x1 H3 IHAcc1].
+ apply Acc_intro; intros y H5.
+ inversion_clear H5; auto with sets.
+ apply IHAcc; auto.
+ apply Acc_intro; trivial.
+Qed.
+
+
+Lemma wf_symprod :
+ well_founded leA -> well_founded leB -> well_founded Symprod.
+Proof.
+ red in |- *.
+ destruct a.
+ apply Acc_symprod; auto with sets.
+Qed.
+
+End Wf_Symmetric_Product.
+
+
+Section Swap.
+
+ Variable A : Set.
+ Variable R : A -> A -> Prop.
+
+ Notation SwapProd := (swapprod A R).
+
+
+ Lemma swap_Acc : forall x y:A, Acc SwapProd (x, y) -> Acc SwapProd (y, x).
+Proof.
+ intros.
+ inversion_clear H.
+ apply Acc_intro.
+ destruct y0; intros.
+ inversion_clear H; inversion_clear H1; apply H0.
+ apply sp_swap.
+ apply right_sym; auto with sets.
+
+ apply sp_swap.
+ apply left_sym; auto with sets.
+
+ apply sp_noswap.
+ apply right_sym; auto with sets.
+
+ apply sp_noswap.
+ apply left_sym; auto with sets.
+Qed.
+
+
+ Lemma Acc_swapprod :
+ forall x y:A, Acc R x -> Acc R y -> Acc SwapProd (x, y).
+Proof.
+ induction 1 as [x0 _ IHAcc0]; intros H2.
+ cut (forall y0:A, R y0 x0 -> Acc SwapProd (y0, y)).
+ clear IHAcc0.
+ induction H2 as [x1 _ IHAcc1]; intros H4.
+ cut (forall y:A, R y x1 -> Acc SwapProd (x0, y)).
+ clear IHAcc1.
+ intro.
+ apply Acc_intro.
+ destruct y; intro H5.
+ inversion_clear H5.
+ inversion_clear H0; auto with sets.
+
+ apply swap_Acc.
+ inversion_clear H0; auto with sets.
+
+ intros.
+ apply IHAcc1; auto with sets; intros.
+ apply Acc_inv with (y0, x1); auto with sets.
+ apply sp_noswap.
+ apply right_sym; auto with sets.
+
+ auto with sets.
+Qed.
+
+
+ Lemma wf_swapprod : well_founded R -> well_founded SwapProd.
+Proof.
+ red in |- *.
+ destruct a; intros.
+ apply Acc_swapprod; auto with sets.
+Qed.
+
+End Swap. \ No newline at end of file