summaryrefslogtreecommitdiff
path: root/theories/Vectors/Fin.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Vectors/Fin.v')
-rw-r--r--theories/Vectors/Fin.v174
1 files changed, 121 insertions, 53 deletions
diff --git a/theories/Vectors/Fin.v b/theories/Vectors/Fin.v
index a5e37f34..b9bf6c7f 100644
--- a/theories/Vectors/Fin.v
+++ b/theories/Vectors/Fin.v
@@ -8,13 +8,14 @@
Require Arith_base.
-(** [fin n] is a convinient way to represent \[1 .. n\]
+(** [fin n] is a convenient way to represent \[1 .. n\]
-[fin n] can be seen as a n-uplet of unit where [F1] is the first element of
-the n-uplet and [FS] set (n-1)-uplet of all the element but the first.
+[fin n] can be seen as a n-uplet of unit. [F1] is the first element of
+the n-uplet. If [f] is the k-th element of the (n-1)-uplet, [FS f] is the
+(k+1)-th element of the n-uplet.
Author: Pierre Boutillier
- Institution: PPS, INRIA 12/2010-01/2012
+ Institution: PPS, INRIA 12/2010-01/2012-07/2012
*)
Inductive t : nat -> Set :=
@@ -23,76 +24,68 @@ Inductive t : nat -> Set :=
Section SCHEMES.
Definition case0 P (p: t 0): P p :=
- match p as p' in t n return
- match n as n' return t n' -> Type
- with |0 => fun f0 => P f0 |S _ => fun _ => @ID end p'
- with |F1 _ => @id |FS _ _ => @id end.
+ match p with | F1 | FS _ => fun devil => False_rect (@IDProp) devil (* subterm !!! *) end.
-Definition caseS (P: forall {n}, t (S n) -> Type)
- (P1: forall n, @P n F1) (PS : forall {n} (p: t n), P (FS p))
- {n} (p: t (S n)): P p :=
+Definition caseS' {n : nat} (p : t (S n)) : forall (P : t (S n) -> Type)
+ (P1 : P F1) (PS : forall (p : t n), P (FS p)), P p :=
match p with
- |F1 k => P1 k
- |FS k pp => PS pp
+ | @F1 k => fun P P1 PS => P1
+ | FS pp => fun P P1 PS => PS pp
end.
+Definition caseS (P: forall {n}, t (S n) -> Type)
+ (P1: forall n, @P n F1) (PS : forall {n} (p: t n), P (FS p))
+ {n} (p: t (S n)) : P p := caseS' p P (P1 n) PS.
+
Definition rectS (P: forall {n}, t (S n) -> Type)
(P1: forall n, @P n F1) (PS : forall {n} (p: t (S n)), P p -> P (FS p)):
forall {n} (p: t (S n)), P p :=
fix rectS_fix {n} (p: t (S n)): P p:=
match p with
- |F1 k => P1 k
- |FS 0 pp => case0 (fun f => P (FS f)) pp
- |FS (S k) pp => PS pp (rectS_fix pp)
+ | @F1 k => P1 k
+ | @FS 0 pp => case0 (fun f => P (FS f)) pp
+ | @FS (S k) pp => PS pp (rectS_fix pp)
end.
-Definition rect2 (P: forall {n} (a b: t n), Type)
- (H0: forall n, @P (S n) F1 F1)
- (H1: forall {n} (f: t n), P F1 (FS f))
- (H2: forall {n} (f: t n), P (FS f) F1)
- (HS: forall {n} (f g : t n), P f g -> P (FS f) (FS g)):
- forall {n} (a b: t n), P a b :=
-fix rect2_fix {n} (a: t n): forall (b: t n), P a b :=
-match a with
- |F1 m => fun (b: t (S m)) => match b as b' in t n'
- return match n',b' with
- |0,_ => @ID
- |S n0,b0 => P F1 b0
- end with
- |F1 m' => H0 m'
- |FS m' b' => H1 b'
- end
- |FS m a' => fun (b: t (S m)) => match b with
- |F1 m' => fun aa: t m' => H2 aa
- |FS m' b' => fun aa: t m' => HS aa b' (rect2_fix aa b')
- end a'
-end.
+Definition rect2 (P : forall {n} (a b : t n), Type)
+ (H0 : forall n, @P (S n) F1 F1)
+ (H1 : forall {n} (f : t n), P F1 (FS f))
+ (H2 : forall {n} (f : t n), P (FS f) F1)
+ (HS : forall {n} (f g : t n), P f g -> P (FS f) (FS g)) :
+ forall {n} (a b : t n), P a b :=
+ fix rect2_fix {n} (a : t n) {struct a} : forall (b : t n), P a b :=
+ match a with
+ | @F1 m => fun (b : t (S m)) => caseS' b (P F1) (H0 _) H1
+ | @FS m a' => fun (b : t (S m)) =>
+ caseS' b (fun b => P (@FS m a') b) (H2 a') (fun b' => HS _ _ (rect2_fix a' b'))
+ end.
+
End SCHEMES.
Definition FS_inj {n} (x y: t n) (eq: FS x = FS y): x = y :=
match eq in _ = a return
match a as a' in t m return match m with |0 => Prop |S n' => t n' -> Prop end
- with @F1 _ => fun _ => True |@FS _ y => fun x' => x' = y end x with
+ with F1 => fun _ => True |FS y => fun x' => x' = y end x with
eq_refl => eq_refl
end.
(** [to_nat f] = p iff [f] is the p{^ th} element of [fin m]. *)
Fixpoint to_nat {m} (n : t m) : {i | i < m} :=
- match n in t k return {i | i< k} with
- |F1 j => exist (fun i => i< S j) 0 (Lt.lt_0_Sn j)
- |FS _ p => match to_nat p with |exist i P => exist _ (S i) (Lt.lt_n_S _ _ P) end
+ match n with
+ |@F1 j => exist _ 0 (Lt.lt_0_Sn j)
+ |FS p => match to_nat p with |exist _ i P => exist _ (S i) (Lt.lt_n_S _ _ P) end
end.
(** [of_nat p n] answers the p{^ th} element of [fin n] if p < n or a proof of
p >= n else *)
Fixpoint of_nat (p n : nat) : (t n) + { exists m, p = n + m } :=
match n with
- |0 => inright _ (ex_intro (fun x => p = 0 + x) p (@eq_refl _ p))
+ |0 => inright _ (ex_intro _ p eq_refl)
|S n' => match p with
|0 => inleft _ (F1)
|S p' => match of_nat p' n' with
|inleft f => inleft _ (FS f)
- |inright arg => inright _ (match arg with |ex_intro m e =>
+ |inright arg => inright _ (match arg with |ex_intro _ m e =>
ex_intro (fun x => S p' = S n' + x) m (f_equal S e) end)
end
end
@@ -109,13 +102,35 @@ Fixpoint of_nat_lt {p n : nat} : p < n -> t n :=
end
end.
+Lemma of_nat_ext {p}{n} (h h' : p < n) : of_nat_lt h = of_nat_lt h'.
+Proof.
+ now rewrite (Peano_dec.le_unique _ _ h h').
+Qed.
+
Lemma of_nat_to_nat_inv {m} (p : t m) : of_nat_lt (proj2_sig (to_nat p)) = p.
Proof.
-induction p.
- reflexivity.
- simpl; destruct (to_nat p). simpl. subst p; repeat f_equal. apply Peano_dec.le_unique.
+induction p; simpl.
+- reflexivity.
+- destruct (to_nat p); simpl in *. f_equal. subst p. apply of_nat_ext.
+Qed.
+
+Lemma to_nat_of_nat {p}{n} (h : p < n) : to_nat (of_nat_lt h) = exist _ p h.
+Proof.
+ revert n h.
+ induction p; (destruct n ; intros h; [ destruct (Lt.lt_n_O _ h) | cbn]);
+ [ | rewrite (IHp _ (Lt.lt_S_n p n h))]; f_equal; apply Peano_dec.le_unique.
+Qed.
+
+Lemma to_nat_inj {n} (p q : t n) :
+ proj1_sig (to_nat p) = proj1_sig (to_nat q) -> p = q.
+Proof.
+ intro H.
+ rewrite <- (of_nat_to_nat_inv p), <- (of_nat_to_nat_inv q).
+ destruct (to_nat p) as (np,hp), (to_nat q) as (nq,hq); simpl in *.
+ revert hp hq. rewrite H. apply of_nat_ext.
Qed.
+
(** [weak p f] answers a function witch is the identity for the p{^ th} first
element of [fin (p + m)] and [FS (FS .. (FS (f k)))] for [FS (FS .. (FS k))]
with p FSs *)
@@ -124,15 +139,15 @@ Fixpoint weak {m}{n} p (f : t m -> t n) :
match p as p' return t (p' + m) -> t (p' + n) with
|0 => f
|S p' => fun x => match x with
- |F1 n' => fun eq : n' = p' + m => F1
- |FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq))
+ |@F1 n' => fun eq : n' = p' + m => F1
+ |@FS n' y => fun eq : n' = p' + m => FS (weak p' f (eq_rect _ t y _ eq))
end (eq_refl _)
end.
(** The p{^ th} element of [fin m] viewed as the p{^ th} element of
[fin (m + n)] *)
Fixpoint L {m} n (p : t m) : t (m + n) :=
- match p with |F1 _ => F1 |FS _ p' => FS (L n p') end.
+ match p with |F1 => F1 |FS p' => FS (L n p') end.
Lemma L_sanity {m} n (p : t m) : proj1_sig (to_nat (L n p)) = proj1_sig (to_nat p).
Proof.
@@ -145,12 +160,13 @@ Qed.
[fin (n + m)]
Really really ineficient !!! *)
Definition L_R {m} n (p : t m) : t (n + m).
+Proof.
induction n.
exact p.
exact ((fix LS k (p: t k) :=
match p with
- |F1 k' => @F1 (S k')
- |FS _ p' => FS (LS _ p')
+ |@F1 k' => @F1 (S k')
+ |FS p' => FS (LS _ p')
end) _ IHn).
Defined.
@@ -168,8 +184,8 @@ Qed.
Fixpoint depair {m n} (o : t m) (p : t n) : t (m * n) :=
match o with
- |F1 m' => L (m' * n) p
- |FS m' o' => R n (depair o' p)
+ |@F1 m' => L (m' * n) p
+ |FS o' => R n (depair o' p)
end.
Lemma depair_sanity {m n} (o : t m) (p : t n) :
@@ -182,3 +198,55 @@ induction o ; simpl.
rewrite Plus.plus_assoc. destruct (to_nat o); simpl; rewrite Mult.mult_succ_r.
now rewrite (Plus.plus_comm n).
Qed.
+
+Fixpoint eqb {m n} (p : t m) (q : t n) :=
+match p, q with
+| @F1 m', @F1 n' => EqNat.beq_nat m' n'
+| FS _, F1 => false
+| F1, FS _ => false
+| FS p', FS q' => eqb p' q'
+end.
+
+Lemma eqb_nat_eq : forall m n (p : t m) (q : t n), eqb p q = true -> m = n.
+Proof.
+intros m n p; revert n; induction p; destruct q; simpl; intros; f_equal.
++ now apply EqNat.beq_nat_true.
++ easy.
++ easy.
++ eapply IHp. eassumption.
+Qed.
+
+Lemma eqb_eq : forall n (p q : t n), eqb p q = true <-> p = q.
+Proof.
+apply rect2; simpl; intros.
+- split; intros ; [ reflexivity | now apply EqNat.beq_nat_true_iff ].
+- now split.
+- now split.
+- eapply iff_trans.
+ + eassumption.
+ + split.
+ * intros; now f_equal.
+ * apply FS_inj.
+Qed.
+
+Lemma eq_dec {n} (x y : t n): {x = y} + {x <> y}.
+Proof.
+ case_eq (eqb x y); intros.
+ + left; now apply eqb_eq.
+ + right. intros Heq. apply <- eqb_eq in Heq. congruence.
+Defined.
+
+Definition cast: forall {m} (v: t m) {n}, m = n -> t n.
+Proof.
+refine (fix cast {m} (v: t m) {struct v} :=
+ match v in t m' return forall n, m' = n -> t n with
+ |F1 => fun n => match n with
+ | 0 => fun H => False_rect _ _
+ | S n' => fun H => F1
+ end
+ |FS f => fun n => match n with
+ | 0 => fun H => False_rect _ _
+ | S n' => fun H => FS (cast f n' (f_equal pred H))
+ end
+end); discriminate.
+Defined.