summaryrefslogtreecommitdiff
path: root/theories/Structures
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Structures')
-rw-r--r--theories/Structures/DecidableType.v2
-rw-r--r--theories/Structures/DecidableTypeEx.v2
-rw-r--r--theories/Structures/Equalities.v77
-rw-r--r--theories/Structures/EqualitiesFacts.v23
-rw-r--r--theories/Structures/GenericMinMax.v16
-rw-r--r--theories/Structures/OrderedType.v19
-rw-r--r--theories/Structures/OrderedTypeAlt.v2
-rw-r--r--theories/Structures/OrderedTypeEx.v24
-rw-r--r--theories/Structures/Orders.v109
-rw-r--r--theories/Structures/OrdersAlt.v2
-rw-r--r--theories/Structures/OrdersEx.v12
-rw-r--r--theories/Structures/OrdersFacts.v324
-rw-r--r--theories/Structures/OrdersLists.v6
13 files changed, 445 insertions, 173 deletions
diff --git a/theories/Structures/DecidableType.v b/theories/Structures/DecidableType.v
index 18153436..79e81771 100644
--- a/theories/Structures/DecidableType.v
+++ b/theories/Structures/DecidableType.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: DecidableType.v 12641 2010-01-07 15:32:52Z letouzey $ *)
-
Require Export SetoidList.
Require Equalities.
diff --git a/theories/Structures/DecidableTypeEx.v b/theories/Structures/DecidableTypeEx.v
index ac1f014b..2c02f8dd 100644
--- a/theories/Structures/DecidableTypeEx.v
+++ b/theories/Structures/DecidableTypeEx.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: DecidableTypeEx.v 12641 2010-01-07 15:32:52Z letouzey $ *)
-
Require Import DecidableType OrderedType OrderedTypeEx.
Set Implicit Arguments.
Unset Strict Implicit.
diff --git a/theories/Structures/Equalities.v b/theories/Structures/Equalities.v
index 382511d9..eb537385 100644
--- a/theories/Structures/Equalities.v
+++ b/theories/Structures/Equalities.v
@@ -6,23 +6,28 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: Equalities.v 13475 2010-09-29 14:33:13Z letouzey $ *)
-
Require Export RelationClasses.
+Require Import Bool Morphisms Setoid.
Set Implicit Arguments.
Unset Strict Implicit.
+(** Structure with nothing inside.
+ Used to force a module type T into a module via Nop <+ T. (HACK!) *)
+
+Module Type Nop.
+End Nop.
+
(** * Structure with just a base type [t] *)
Module Type Typ.
- Parameter Inline t : Type.
+ Parameter Inline(10) t : Type.
End Typ.
(** * Structure with an equality relation [eq] *)
Module Type HasEq (Import T:Typ).
- Parameter Inline eq : t -> t -> Prop.
+ Parameter Inline(30) eq : t -> t -> Prop.
End HasEq.
Module Type Eq := Typ <+ HasEq.
@@ -61,10 +66,19 @@ End HasEqDec.
(** Having [eq_dec] is the same as having a boolean equality plus
a correctness proof. *)
-Module Type HasEqBool (Import E:Eq').
+Module Type HasEqb (Import T:Typ).
Parameter Inline eqb : t -> t -> bool.
- Parameter eqb_eq : forall x y, eqb x y = true <-> x==y.
-End HasEqBool.
+End HasEqb.
+
+Module Type EqbSpec (T:Typ)(X:HasEq T)(Y:HasEqb T).
+ Parameter eqb_eq : forall x y, Y.eqb x y = true <-> X.eq x y.
+End EqbSpec.
+
+Module Type EqbNotation (T:Typ)(E:HasEqb T).
+ Infix "=?" := E.eqb (at level 70, no associativity).
+End EqbNotation.
+
+Module Type HasEqBool (E:Eq) := HasEqb E <+ EqbSpec E E.
(** From these basic blocks, we can build many combinations
of static standalone module types. *)
@@ -102,8 +116,10 @@ Module Type EqualityTypeBoth' := EqualityTypeBoth <+ EqNotation.
Module Type DecidableType' := DecidableType <+ EqNotation.
Module Type DecidableTypeOrig' := DecidableTypeOrig <+ EqNotation.
Module Type DecidableTypeBoth' := DecidableTypeBoth <+ EqNotation.
-Module Type BooleanEqualityType' := BooleanEqualityType <+ EqNotation.
-Module Type BooleanDecidableType' := BooleanDecidableType <+ EqNotation.
+Module Type BooleanEqualityType' :=
+ BooleanEqualityType <+ EqNotation <+ EqbNotation.
+Module Type BooleanDecidableType' :=
+ BooleanDecidableType <+ EqNotation <+ EqbNotation.
Module Type DecidableTypeFull' := DecidableTypeFull <+ EqNotation.
(** * Compatibility wrapper from/to the old version of
@@ -162,6 +178,49 @@ Module Bool2Dec (E:BooleanEqualityType) <: BooleanDecidableType
:= E <+ HasEqBool2Dec.
+(** Some properties of boolean equality *)
+
+Module BoolEqualityFacts (Import E : BooleanEqualityType').
+
+(** [eqb] is compatible with [eq] *)
+
+Instance eqb_compat : Proper (E.eq ==> E.eq ==> Logic.eq) eqb.
+Proof.
+intros x x' Exx' y y' Eyy'.
+apply eq_true_iff_eq.
+now rewrite 2 eqb_eq, Exx', Eyy'.
+Qed.
+
+(** Alternative specification of [eqb] based on [reflect]. *)
+
+Lemma eqb_spec x y : reflect (x==y) (x =? y).
+Proof.
+apply iff_reflect. symmetry. apply eqb_eq.
+Defined.
+
+(** Negated form of [eqb_eq] *)
+
+Lemma eqb_neq x y : (x =? y) = false <-> x ~= y.
+Proof.
+now rewrite <- not_true_iff_false, eqb_eq.
+Qed.
+
+(** Basic equality laws for [eqb] *)
+
+Lemma eqb_refl x : (x =? x) = true.
+Proof.
+now apply eqb_eq.
+Qed.
+
+Lemma eqb_sym x y : (x =? y) = (y =? x).
+Proof.
+apply eq_true_iff_eq. now rewrite 2 eqb_eq.
+Qed.
+
+(** Transitivity is a particular case of [eqb_compat] *)
+
+End BoolEqualityFacts.
+
(** * UsualDecidableType
diff --git a/theories/Structures/EqualitiesFacts.v b/theories/Structures/EqualitiesFacts.v
index d9b1d76f..c69885b4 100644
--- a/theories/Structures/EqualitiesFacts.v
+++ b/theories/Structures/EqualitiesFacts.v
@@ -8,21 +8,8 @@
Require Import Equalities Bool SetoidList RelationPairs.
-(** In a BooleanEqualityType, [eqb] is compatible with [eq] *)
-
-Module BoolEqualityFacts (Import E : BooleanEqualityType).
-
-Instance eqb_compat : Proper (E.eq ==> E.eq ==> Logic.eq) eqb.
-Proof.
-intros x x' Exx' y y' Eyy'.
-apply eq_true_iff_eq.
-rewrite 2 eqb_eq, Exx', Eyy'; auto with *.
-Qed.
-
-End BoolEqualityFacts.
-
-
(** * Keys and datas used in FMap *)
+
Module KeyDecidableType(Import D:DecidableType).
Section Elt.
@@ -42,9 +29,9 @@ Module KeyDecidableType(Import D:DecidableType).
(* eqk, eqke are equalities, ltk is a strict order *)
- Global Instance eqk_equiv : Equivalence eqk.
+ Global Instance eqk_equiv : Equivalence eqk := _.
- Global Instance eqke_equiv : Equivalence eqke.
+ Global Instance eqke_equiv : Equivalence eqke := _.
(* Additionnal facts *)
@@ -156,7 +143,7 @@ Module PairDecidableType(D1 D2:DecidableType) <: DecidableType.
Definition eq := (D1.eq * D2.eq)%signature.
- Instance eq_equiv : Equivalence eq.
+ Instance eq_equiv : Equivalence eq := _.
Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
Proof.
@@ -172,7 +159,7 @@ End PairDecidableType.
Module PairUsualDecidableType(D1 D2:UsualDecidableType) <: UsualDecidableType.
Definition t := (D1.t * D2.t)%type.
Definition eq := @eq t.
- Program Instance eq_equiv : Equivalence eq.
+ Instance eq_equiv : Equivalence eq := _.
Definition eq_dec : forall x y, { eq x y }+{ ~eq x y }.
Proof.
intros (x1,x2) (y1,y2);
diff --git a/theories/Structures/GenericMinMax.v b/theories/Structures/GenericMinMax.v
index 68f20189..5583142f 100644
--- a/theories/Structures/GenericMinMax.v
+++ b/theories/Structures/GenericMinMax.v
@@ -79,7 +79,7 @@ End GenericMinMax.
(** ** Consequences of the minimalist interface: facts about [max]. *)
Module MaxLogicalProperties (Import O:TotalOrder')(Import M:HasMax O).
- Module Import T := !MakeOrderTac O.
+ Module Import Private_Tac := !MakeOrderTac O.
(** An alternative caracterisation of [max], equivalent to
[max_l /\ max_r] *)
@@ -277,8 +277,9 @@ End MaxLogicalProperties.
Module MinMaxLogicalProperties (Import O:TotalOrder')(Import M:HasMinMax O).
Include MaxLogicalProperties O M.
- Import T.
+ Import Private_Tac.
+ Module Import Private_Rev.
Module ORev := TotalOrderRev O.
Module MRev <: HasMax ORev.
Definition max x y := M.min y x.
@@ -286,6 +287,7 @@ Module MinMaxLogicalProperties (Import O:TotalOrder')(Import M:HasMinMax O).
Definition max_r x y := M.min_l y x.
End MRev.
Module MPRev := MaxLogicalProperties ORev MRev.
+ End Private_Rev.
Instance min_compat : Proper (eq==>eq==>eq) min.
Proof. intros x x' Hx y y' Hy. apply MPRev.max_compat; assumption. Qed.
@@ -578,29 +580,29 @@ End UsualMinMaxLogicalProperties.
Module UsualMinMaxDecProperties
(Import O:UsualOrderedTypeFull')(Import M:HasMinMax O).
- Module P := MinMaxDecProperties O M.
+ Module Import Private_Dec := MinMaxDecProperties O M.
Lemma max_case_strong : forall n m (P:t -> Type),
(m<=n -> P n) -> (n<=m -> P m) -> P (max n m).
- Proof. intros; apply P.max_case_strong; auto. congruence. Defined.
+ Proof. intros; apply max_case_strong; auto. congruence. Defined.
Lemma max_case : forall n m (P:t -> Type),
P n -> P m -> P (max n m).
Proof. intros; apply max_case_strong; auto. Defined.
Lemma max_dec : forall n m, {max n m = n} + {max n m = m}.
- Proof. exact P.max_dec. Defined.
+ Proof. exact max_dec. Defined.
Lemma min_case_strong : forall n m (P:O.t -> Type),
(n<=m -> P n) -> (m<=n -> P m) -> P (min n m).
- Proof. intros; apply P.min_case_strong; auto. congruence. Defined.
+ Proof. intros; apply min_case_strong; auto. congruence. Defined.
Lemma min_case : forall n m (P:O.t -> Type),
P n -> P m -> P (min n m).
Proof. intros. apply min_case_strong; auto. Defined.
Lemma min_dec : forall n m, {min n m = n} + {min n m = m}.
- Proof. exact P.min_dec. Defined.
+ Proof. exact min_dec. Defined.
End UsualMinMaxDecProperties.
diff --git a/theories/Structures/OrderedType.v b/theories/Structures/OrderedType.v
index 57f491d2..f84cdf32 100644
--- a/theories/Structures/OrderedType.v
+++ b/theories/Structures/OrderedType.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: OrderedType.v 12732 2010-02-10 22:46:59Z letouzey $ *)
-
Require Export SetoidList Morphisms OrdersTac.
Set Implicit Arguments.
Unset Strict Implicit.
@@ -22,6 +20,10 @@ Inductive Compare (X : Type) (lt eq : X -> X -> Prop) (x y : X) : Type :=
| EQ : eq x y -> Compare lt eq x y
| GT : lt y x -> Compare lt eq x y.
+Arguments LT [X lt eq x y] _.
+Arguments EQ [X lt eq x y] _.
+Arguments GT [X lt eq x y] _.
+
Module Type MiniOrderedType.
Parameter Inline t : Type.
@@ -143,7 +145,7 @@ Module OrderedTypeFacts (Import O: OrderedType).
Lemma elim_compare_eq :
forall x y : t,
- eq x y -> exists H : eq x y, compare x y = EQ _ H.
+ eq x y -> exists H : eq x y, compare x y = EQ H.
Proof.
intros; case (compare x y); intros H'; try (exfalso; order).
exists H'; auto.
@@ -151,7 +153,7 @@ Module OrderedTypeFacts (Import O: OrderedType).
Lemma elim_compare_lt :
forall x y : t,
- lt x y -> exists H : lt x y, compare x y = LT _ H.
+ lt x y -> exists H : lt x y, compare x y = LT H.
Proof.
intros; case (compare x y); intros H'; try (exfalso; order).
exists H'; auto.
@@ -159,7 +161,7 @@ Module OrderedTypeFacts (Import O: OrderedType).
Lemma elim_compare_gt :
forall x y : t,
- lt y x -> exists H : lt y x, compare x y = GT _ H.
+ lt y x -> exists H : lt y x, compare x y = GT H.
Proof.
intros; case (compare x y); intros H'; try (exfalso; order).
exists H'; auto.
@@ -318,16 +320,13 @@ Module KeyOrderedType(O:OrderedType).
Hint Immediate eqk_sym eqke_sym.
Global Instance eqk_equiv : Equivalence eqk.
- Proof. split; eauto. Qed.
+ Proof. constructor; eauto. Qed.
Global Instance eqke_equiv : Equivalence eqke.
Proof. split; eauto. Qed.
Global Instance ltk_strorder : StrictOrder ltk.
- Proof.
- split; eauto.
- intros (x,e); compute; apply (StrictOrder_Irreflexive x).
- Qed.
+ Proof. constructor; eauto. intros x; apply (irreflexivity (x:=fst x)). Qed.
Global Instance ltk_compat : Proper (eqk==>eqk==>iff) ltk.
Proof.
diff --git a/theories/Structures/OrderedTypeAlt.v b/theories/Structures/OrderedTypeAlt.v
index f6c1532b..b054496e 100644
--- a/theories/Structures/OrderedTypeAlt.v
+++ b/theories/Structures/OrderedTypeAlt.v
@@ -5,8 +5,6 @@
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: OrderedTypeAlt.v 12384 2009-10-13 14:39:51Z letouzey $ *)
-
Require Import OrderedType.
(** * An alternative (but equivalent) presentation for an Ordered Type
diff --git a/theories/Structures/OrderedTypeEx.v b/theories/Structures/OrderedTypeEx.v
index 128cd576..adeba9e4 100644
--- a/theories/Structures/OrderedTypeEx.v
+++ b/theories/Structures/OrderedTypeEx.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: OrderedTypeEx.v 13297 2010-07-19 23:32:42Z letouzey $ *)
-
Require Import OrderedType.
Require Import ZArith.
Require Import Omega.
@@ -111,26 +109,18 @@ Module Positive_as_OT <: UsualOrderedType.
Definition eq_sym := @sym_eq t.
Definition eq_trans := @trans_eq t.
- Definition lt p q:= (p ?= q) Eq = Lt.
+ Definition lt := Plt.
- Lemma lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z.
- Proof.
- unfold lt; intros x y z.
- change ((Zpos x < Zpos y)%Z -> (Zpos y < Zpos z)%Z -> (Zpos x < Zpos z)%Z).
- omega.
- Qed.
+ Definition lt_trans := Plt_trans.
Lemma lt_not_eq : forall x y : t, lt x y -> ~ eq x y.
Proof.
- intros; intro.
- rewrite H0 in H.
- unfold lt in H.
- rewrite Pcompare_refl in H; discriminate.
+ intros x y H. contradict H. rewrite H. apply Plt_irrefl.
Qed.
Definition compare : forall x y : t, Compare lt eq x y.
Proof.
- intros x y. destruct ((x ?= y) Eq) as [ | | ]_eqn.
+ intros x y. destruct (x ?= y) as [ | | ]_eqn.
apply EQ; apply Pcompare_Eq_eq; assumption.
apply LT; assumption.
apply GT; apply ZC1; assumption.
@@ -324,10 +314,10 @@ Module PositiveOrderedTypeBits <: UsualOrderedType.
Lemma eq_dec (x y: positive): {x = y} + {x <> y}.
Proof.
- intros. case_eq ((x ?= y) Eq); intros.
+ intros. case_eq (x ?= y); intros.
left. apply Pcompare_Eq_eq; auto.
- right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
- right. red. intro. subst y. rewrite (Pcompare_refl x) in H. discriminate.
+ right. red. intro. subst y. rewrite (Pos.compare_refl x) in H. discriminate.
+ right. red. intro. subst y. rewrite (Pos.compare_refl x) in H. discriminate.
Qed.
End PositiveOrderedTypeBits.
diff --git a/theories/Structures/Orders.v b/theories/Structures/Orders.v
index 5567b743..1d025439 100644
--- a/theories/Structures/Orders.v
+++ b/theories/Structures/Orders.v
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(* $Id: Orders.v 13276 2010-07-10 14:34:44Z letouzey $ *)
-
Require Export Relations Morphisms Setoid Equalities.
Set Implicit Arguments.
Unset Strict Implicit.
@@ -67,20 +65,34 @@ Module Type LeIsLtEq (Import E:EqLtLe').
Axiom le_lteq : forall x y, x<=y <-> x<y \/ x==y.
End LeIsLtEq.
-Module Type HasCompare (Import E:EqLt).
+Module Type StrOrder := EqualityType <+ HasLt <+ IsStrOrder.
+Module Type StrOrder' := StrOrder <+ EqLtNotation.
+
+(** Versions with a decidable ternary comparison *)
+
+Module Type HasCmp (Import T:Typ).
Parameter Inline compare : t -> t -> comparison.
- Axiom compare_spec : forall x y, CompSpec eq lt x y (compare x y).
-End HasCompare.
+End HasCmp.
+
+Module Type CmpNotation (T:Typ)(C:HasCmp T).
+ Infix "?=" := C.compare (at level 70, no associativity).
+End CmpNotation.
+
+Module Type CmpSpec (Import E:EqLt')(Import C:HasCmp E).
+ Axiom compare_spec : forall x y, CompareSpec (x==y) (x<y) (y<x) (compare x y).
+End CmpSpec.
+
+Module Type HasCompare (E:EqLt) := HasCmp E <+ CmpSpec E.
-Module Type StrOrder := EqualityType <+ HasLt <+ IsStrOrder.
Module Type DecStrOrder := StrOrder <+ HasCompare.
+Module Type DecStrOrder' := DecStrOrder <+ EqLtNotation <+ CmpNotation.
+
Module Type OrderedType <: DecidableType := DecStrOrder <+ HasEqDec.
-Module Type OrderedTypeFull := OrderedType <+ HasLe <+ LeIsLtEq.
+Module Type OrderedType' := OrderedType <+ EqLtNotation <+ CmpNotation.
-Module Type StrOrder' := StrOrder <+ EqLtNotation.
-Module Type DecStrOrder' := DecStrOrder <+ EqLtNotation.
-Module Type OrderedType' := OrderedType <+ EqLtNotation.
-Module Type OrderedTypeFull' := OrderedTypeFull <+ EqLtLeNotation.
+Module Type OrderedTypeFull := OrderedType <+ HasLe <+ LeIsLtEq.
+Module Type OrderedTypeFull' :=
+ OrderedTypeFull <+ EqLtLeNotation <+ CmpNotation.
(** NB: in [OrderedType], an [eq_dec] could be deduced from [compare].
But adding this redundant field allows to see an [OrderedType] as a
@@ -169,50 +181,63 @@ Module OTF_to_TotalOrder (O:OrderedTypeFull) <: TotalOrder
Local Coercion is_true : bool >-> Sortclass.
Hint Unfold is_true.
-Module Type HasLeBool (Import T:Typ).
- Parameter Inline leb : t -> t -> bool.
-End HasLeBool.
-
-Module Type HasLtBool (Import T:Typ).
- Parameter Inline ltb : t -> t -> bool.
-End HasLtBool.
+Module Type HasLeb (Import T:Typ).
+ Parameter Inline leb : t -> t -> bool.
+End HasLeb.
-Module Type LeBool := Typ <+ HasLeBool.
-Module Type LtBool := Typ <+ HasLtBool.
+Module Type HasLtb (Import T:Typ).
+ Parameter Inline ltb : t -> t -> bool.
+End HasLtb.
-Module Type LeBoolNotation (E:LeBool).
- Infix "<=?" := E.leb (at level 35).
-End LeBoolNotation.
+Module Type LebNotation (T:Typ)(E:HasLeb T).
+ Infix "<=?" := E.leb (at level 35).
+End LebNotation.
-Module Type LtBoolNotation (E:LtBool).
- Infix "<?" := E.ltb (at level 35).
-End LtBoolNotation.
+Module Type LtbNotation (T:Typ)(E:HasLtb T).
+ Infix "<?" := E.ltb (at level 35).
+End LtbNotation.
-Module Type LeBool' := LeBool <+ LeBoolNotation.
-Module Type LtBool' := LtBool <+ LtBoolNotation.
+Module Type LebSpec (T:Typ)(X:HasLe T)(Y:HasLeb T).
+ Parameter leb_le : forall x y, Y.leb x y = true <-> X.le x y.
+End LebSpec.
-Module Type LeBool_Le (T:Typ)(X:HasLeBool T)(Y:HasLe T).
- Parameter leb_le : forall x y, X.leb x y = true <-> Y.le x y.
-End LeBool_Le.
+Module Type LtbSpec (T:Typ)(X:HasLt T)(Y:HasLtb T).
+ Parameter ltb_lt : forall x y, Y.ltb x y = true <-> X.lt x y.
+End LtbSpec.
-Module Type LtBool_Lt (T:Typ)(X:HasLtBool T)(Y:HasLt T).
- Parameter ltb_lt : forall x y, X.ltb x y = true <-> Y.lt x y.
-End LtBool_Lt.
+Module Type LeBool := Typ <+ HasLeb.
+Module Type LtBool := Typ <+ HasLtb.
+Module Type LeBool' := LeBool <+ LebNotation.
+Module Type LtBool' := LtBool <+ LtbNotation.
-Module Type LeBoolIsTotal (Import X:LeBool').
+Module Type LebIsTotal (Import X:LeBool').
Axiom leb_total : forall x y, (x <=? y) = true \/ (y <=? x) = true.
-End LeBoolIsTotal.
+End LebIsTotal.
-Module Type TotalLeBool := LeBool <+ LeBoolIsTotal.
-Module Type TotalLeBool' := LeBool' <+ LeBoolIsTotal.
+Module Type TotalLeBool := LeBool <+ LebIsTotal.
+Module Type TotalLeBool' := LeBool' <+ LebIsTotal.
-Module Type LeBoolIsTransitive (Import X:LeBool').
+Module Type LebIsTransitive (Import X:LeBool').
Axiom leb_trans : Transitive X.leb.
-End LeBoolIsTransitive.
+End LebIsTransitive.
+
+Module Type TotalTransitiveLeBool := TotalLeBool <+ LebIsTransitive.
+Module Type TotalTransitiveLeBool' := TotalLeBool' <+ LebIsTransitive.
+
+(** Grouping all boolean comparison functions *)
+
+Module Type HasBoolOrdFuns (T:Typ) := HasEqb T <+ HasLtb T <+ HasLeb T.
+
+Module Type HasBoolOrdFuns' (T:Typ) :=
+ HasBoolOrdFuns T <+ EqbNotation T <+ LtbNotation T <+ LebNotation T.
-Module Type TotalTransitiveLeBool := TotalLeBool <+ LeBoolIsTransitive.
-Module Type TotalTransitiveLeBool' := TotalLeBool' <+ LeBoolIsTransitive.
+Module Type BoolOrdSpecs (O:EqLtLe)(F:HasBoolOrdFuns O) :=
+ EqbSpec O O F <+ LtbSpec O O F <+ LebSpec O O F.
+Module Type OrderFunctions (E:EqLtLe) :=
+ HasCompare E <+ HasBoolOrdFuns E <+ BoolOrdSpecs E.
+Module Type OrderFunctions' (E:EqLtLe) :=
+ HasCompare E <+ CmpNotation E <+ HasBoolOrdFuns' E <+ BoolOrdSpecs E.
(** * From [OrderedTypeFull] to [TotalTransitiveLeBool] *)
diff --git a/theories/Structures/OrdersAlt.v b/theories/Structures/OrdersAlt.v
index 21ef8eb8..85e7fb17 100644
--- a/theories/Structures/OrdersAlt.v
+++ b/theories/Structures/OrdersAlt.v
@@ -11,8 +11,6 @@
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
-(* $Id: OrdersAlt.v 12754 2010-02-12 16:21:48Z letouzey $ *)
-
Require Import OrderedType Orders.
Set Implicit Arguments.
diff --git a/theories/Structures/OrdersEx.v b/theories/Structures/OrdersEx.v
index 9f83d82b..e071d053 100644
--- a/theories/Structures/OrdersEx.v
+++ b/theories/Structures/OrdersEx.v
@@ -11,20 +11,18 @@
* Institution: LRI, CNRS UMR 8623 - Université Paris Sud
* 91405 Orsay, France *)
-(* $Id: OrdersEx.v 12641 2010-01-07 15:32:52Z letouzey $ *)
-
-Require Import Orders NatOrderedType POrderedType NOrderedType
- ZOrderedType RelationPairs EqualitiesFacts.
+Require Import Orders NPeano POrderedType NArith
+ ZArith RelationPairs EqualitiesFacts.
(** * Examples of Ordered Type structures. *)
(** Ordered Type for [nat], [Positive], [N], [Z] with the usual order. *)
-Module Nat_as_OT := NatOrderedType.Nat_as_OT.
+Module Nat_as_OT := NPeano.Nat.
Module Positive_as_OT := POrderedType.Positive_as_OT.
-Module N_as_OT := NOrderedType.N_as_OT.
-Module Z_as_OT := ZOrderedType.Z_as_OT.
+Module N_as_OT := BinNat.N.
+Module Z_as_OT := BinInt.Z.
(** An OrderedType can now directly be seen as a DecidableType *)
diff --git a/theories/Structures/OrdersFacts.v b/theories/Structures/OrdersFacts.v
index a28b7977..2e9c0cf5 100644
--- a/theories/Structures/OrdersFacts.v
+++ b/theories/Structures/OrdersFacts.v
@@ -6,15 +6,76 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-Require Import Basics OrdersTac.
+Require Import Bool Basics OrdersTac.
Require Export Orders.
Set Implicit Arguments.
Unset Strict Implicit.
-(** * Properties of [OrderedTypeFull] *)
+(** * Properties of [compare] *)
-Module OrderedTypeFullFacts (Import O:OrderedTypeFull').
+Module Type CompareFacts (Import O:DecStrOrder').
+
+ Local Infix "?=" := compare (at level 70, no associativity).
+
+ Lemma compare_eq_iff x y : (x ?= y) = Eq <-> x==y.
+ Proof.
+ case compare_spec; intro H; split; try easy; intro EQ;
+ contradict H; rewrite EQ; apply irreflexivity.
+ Qed.
+
+ Lemma compare_eq x y : (x ?= y) = Eq -> x==y.
+ Proof.
+ apply compare_eq_iff.
+ Qed.
+
+ Lemma compare_lt_iff x y : (x ?= y) = Lt <-> x<y.
+ Proof.
+ case compare_spec; intro H; split; try easy; intro LT;
+ contradict LT; rewrite H; apply irreflexivity.
+ Qed.
+
+ Lemma compare_gt_iff x y : (x ?= y) = Gt <-> y<x.
+ Proof.
+ case compare_spec; intro H; split; try easy; intro LT;
+ contradict LT; rewrite H; apply irreflexivity.
+ Qed.
+
+ Lemma compare_nlt_iff x y : (x ?= y) <> Lt <-> ~(x<y).
+ Proof.
+ rewrite compare_lt_iff; intuition.
+ Qed.
+
+ Lemma compare_ngt_iff x y : (x ?= y) <> Gt <-> ~(y<x).
+ Proof.
+ rewrite compare_gt_iff; intuition.
+ Qed.
+
+ Hint Rewrite compare_eq_iff compare_lt_iff compare_gt_iff : order.
+
+ Instance compare_compat : Proper (eq==>eq==>Logic.eq) compare.
+ Proof.
+ intros x x' Hxx' y y' Hyy'.
+ case (compare_spec x' y'); autorewrite with order; now rewrite Hxx', Hyy'.
+ Qed.
+
+ Lemma compare_refl x : (x ?= x) = Eq.
+ Proof.
+ case compare_spec; intros; trivial; now elim irreflexivity with x.
+ Qed.
+
+ Lemma compare_antisym x y : (y ?= x) = CompOpp (x ?= y).
+ Proof.
+ case (compare_spec x y); simpl; autorewrite with order;
+ trivial; now symmetry.
+ Qed.
+
+End CompareFacts.
+
+
+ (** * Properties of [OrderedTypeFull] *)
+
+Module Type OrderedTypeFullFacts (Import O:OrderedTypeFull').
Module OrderTac := OTF_to_OrderTac O.
Ltac order := OrderTac.order.
@@ -47,6 +108,18 @@ Module OrderedTypeFullFacts (Import O:OrderedTypeFull').
Lemma eq_is_le_ge : forall x y, x==y <-> x<=y /\ y<=x.
Proof. iorder. Qed.
+ Include CompareFacts O.
+
+ Lemma compare_le_iff x y : compare x y <> Gt <-> x<=y.
+ Proof.
+ rewrite le_not_gt_iff. apply compare_ngt_iff.
+ Qed.
+
+ Lemma compare_ge_iff x y : compare x y <> Lt <-> y<=x.
+ Proof.
+ rewrite le_not_gt_iff. apply compare_nlt_iff.
+ Qed.
+
End OrderedTypeFullFacts.
@@ -84,50 +157,9 @@ Module OrderedTypeFacts (Import O: OrderedType').
Definition lt_irrefl (x:t) : ~x<x := StrictOrder_Irreflexive x.
- (** Some more about [compare] *)
-
- Lemma compare_eq_iff : forall x y, (x ?= y) = Eq <-> x==y.
- Proof.
- intros; elim_compare x y; intuition; try discriminate; order.
- Qed.
-
- Lemma compare_lt_iff : forall x y, (x ?= y) = Lt <-> x<y.
- Proof.
- intros; elim_compare x y; intuition; try discriminate; order.
- Qed.
-
- Lemma compare_gt_iff : forall x y, (x ?= y) = Gt <-> y<x.
- Proof.
- intros; elim_compare x y; intuition; try discriminate; order.
- Qed.
-
- Lemma compare_ge_iff : forall x y, (x ?= y) <> Lt <-> y<=x.
- Proof.
- intros; rewrite compare_lt_iff; intuition.
- Qed.
-
- Lemma compare_le_iff : forall x y, (x ?= y) <> Gt <-> x<=y.
- Proof.
- intros; rewrite compare_gt_iff; intuition.
- Qed.
-
- Hint Rewrite compare_eq_iff compare_lt_iff compare_gt_iff : order.
-
- Instance compare_compat : Proper (eq==>eq==>Logic.eq) compare.
- Proof.
- intros x x' Hxx' y y' Hyy'.
- elim_compare x' y'; autorewrite with order; order.
- Qed.
-
- Lemma compare_refl : forall x, (x ?= x) = Eq.
- Proof.
- intros; elim_compare x x; auto; order.
- Qed.
-
- Lemma compare_antisym : forall x y, (y ?= x) = CompOpp (x ?= y).
- Proof.
- intros; elim_compare x y; simpl; autorewrite with order; order.
- Qed.
+ Include CompareFacts O.
+ Notation compare_le_iff := compare_ngt_iff (only parsing).
+ Notation compare_ge_iff := compare_nlt_iff (only parsing).
(** For compatibility reasons *)
Definition eq_dec := eq_dec.
@@ -162,10 +194,6 @@ Module OrderedTypeFacts (Import O: OrderedType').
End OrderedTypeFacts.
-
-
-
-
(** * Tests of the order tactic
Is it at least capable of proving some basic properties ? *)
@@ -208,7 +236,7 @@ Module OrderedTypeRev (O:OrderedTypeFull) <: OrderedTypeFull.
Definition t := O.t.
Definition eq := O.eq.
-Instance eq_equiv : Equivalence eq.
+Program Instance eq_equiv : Equivalence eq.
Definition eq_dec := O.eq_dec.
Definition lt := flip O.lt.
@@ -232,3 +260,195 @@ Qed.
End OrderedTypeRev.
+Unset Implicit Arguments.
+
+(** * Order relations derived from a [compare] function.
+
+ We factorize here some common properties for ZArith, NArith
+ and co, where [lt] and [le] are defined in terms of [compare].
+ Note that we do not require anything here concerning compatibility
+ of [compare] w.r.t [eq], nor anything concerning transitivity.
+*)
+
+Module Type CompareBasedOrder (Import E:EqLtLe')(Import C:HasCmp E).
+ Include CmpNotation E C.
+ Include IsEq E.
+ Axiom compare_eq_iff : forall x y, (x ?= y) = Eq <-> x == y.
+ Axiom compare_lt_iff : forall x y, (x ?= y) = Lt <-> x < y.
+ Axiom compare_le_iff : forall x y, (x ?= y) <> Gt <-> x <= y.
+ Axiom compare_antisym : forall x y, (y ?= x) = CompOpp (x ?= y).
+End CompareBasedOrder.
+
+Module Type CompareBasedOrderFacts
+ (Import E:EqLtLe')
+ (Import C:HasCmp E)
+ (Import O:CompareBasedOrder E C).
+
+ Lemma compare_spec x y : CompareSpec (x==y) (x<y) (y<x) (x?=y).
+ Proof.
+ case_eq (compare x y); intros H; constructor.
+ now apply compare_eq_iff.
+ now apply compare_lt_iff.
+ rewrite compare_antisym, CompOpp_iff in H. now apply compare_lt_iff.
+ Qed.
+
+ Lemma compare_eq x y : (x ?= y) = Eq -> x==y.
+ Proof.
+ apply compare_eq_iff.
+ Qed.
+
+ Lemma compare_refl x : (x ?= x) = Eq.
+ Proof.
+ now apply compare_eq_iff.
+ Qed.
+
+ Lemma compare_gt_iff x y : (x ?= y) = Gt <-> y<x.
+ Proof.
+ now rewrite <- compare_lt_iff, compare_antisym, CompOpp_iff.
+ Qed.
+
+ Lemma compare_ge_iff x y : (x ?= y) <> Lt <-> y<=x.
+ Proof.
+ now rewrite <- compare_le_iff, compare_antisym, CompOpp_iff.
+ Qed.
+
+ Lemma compare_ngt_iff x y : (x ?= y) <> Gt <-> ~(y<x).
+ Proof.
+ rewrite compare_gt_iff; intuition.
+ Qed.
+
+ Lemma compare_nlt_iff x y : (x ?= y) <> Lt <-> ~(x<y).
+ Proof.
+ rewrite compare_lt_iff; intuition.
+ Qed.
+
+ Lemma compare_nle_iff x y : (x ?= y) = Gt <-> ~(x<=y).
+ Proof.
+ rewrite <- compare_le_iff.
+ destruct compare; split; easy || now destruct 1.
+ Qed.
+
+ Lemma compare_nge_iff x y : (x ?= y) = Lt <-> ~(y<=x).
+ Proof.
+ now rewrite <- compare_nle_iff, compare_antisym, CompOpp_iff.
+ Qed.
+
+ Lemma lt_irrefl x : ~ (x<x).
+ Proof.
+ now rewrite <- compare_lt_iff, compare_refl.
+ Qed.
+
+ Lemma lt_eq_cases n m : n <= m <-> n < m \/ n==m.
+ Proof.
+ rewrite <- compare_lt_iff, <- compare_le_iff, <- compare_eq_iff.
+ destruct (n ?= m); now intuition.
+ Qed.
+
+End CompareBasedOrderFacts.
+
+(** Basic facts about boolean comparisons *)
+
+Module Type BoolOrderFacts
+ (Import E:EqLtLe')
+ (Import C:HasCmp E)
+ (Import F:HasBoolOrdFuns' E)
+ (Import O:CompareBasedOrder E C)
+ (Import S:BoolOrdSpecs E F).
+
+Include CompareBasedOrderFacts E C O.
+
+(** Nota : apart from [eqb_compare] below, facts about [eqb]
+ are in BoolEqualityFacts *)
+
+(** Alternate specifications based on [BoolSpec] and [reflect] *)
+
+Lemma leb_spec0 x y : reflect (x<=y) (x<=?y).
+Proof.
+ apply iff_reflect. symmetry. apply leb_le.
+Defined.
+
+Lemma leb_spec x y : BoolSpec (x<=y) (y<x) (x<=?y).
+Proof.
+ case leb_spec0; constructor; trivial.
+ now rewrite <- compare_lt_iff, compare_nge_iff.
+Qed.
+
+Lemma ltb_spec0 x y : reflect (x<y) (x<?y).
+Proof.
+ apply iff_reflect. symmetry. apply ltb_lt.
+Defined.
+
+Lemma ltb_spec x y : BoolSpec (x<y) (y<=x) (x<?y).
+Proof.
+ case ltb_spec0; constructor; trivial.
+ now rewrite <- compare_le_iff, compare_ngt_iff.
+Qed.
+
+(** Negated variants of the specifications *)
+
+Lemma leb_nle x y : x <=? y = false <-> ~ (x <= y).
+Proof.
+now rewrite <- not_true_iff_false, leb_le.
+Qed.
+
+Lemma leb_gt x y : x <=? y = false <-> y < x.
+Proof.
+now rewrite leb_nle, <- compare_lt_iff, compare_nge_iff.
+Qed.
+
+Lemma ltb_nlt x y : x <? y = false <-> ~ (x < y).
+Proof.
+now rewrite <- not_true_iff_false, ltb_lt.
+Qed.
+
+Lemma ltb_ge x y : x <? y = false <-> y <= x.
+Proof.
+now rewrite ltb_nlt, <- compare_le_iff, compare_ngt_iff.
+Qed.
+
+(** Basic equality laws for boolean tests *)
+
+Lemma leb_refl x : x <=? x = true.
+Proof.
+apply leb_le. apply lt_eq_cases. now right.
+Qed.
+
+Lemma leb_antisym x y : y <=? x = negb (x <? y).
+Proof.
+apply eq_true_iff_eq. now rewrite negb_true_iff, leb_le, ltb_ge.
+Qed.
+
+Lemma ltb_irrefl x : x <? x = false.
+Proof.
+apply ltb_ge. apply lt_eq_cases. now right.
+Qed.
+
+Lemma ltb_antisym x y : y <? x = negb (x <=? y).
+Proof.
+apply eq_true_iff_eq. now rewrite negb_true_iff, ltb_lt, leb_gt.
+Qed.
+
+(** Relation bewteen [compare] and the boolean comparisons *)
+
+Lemma eqb_compare x y :
+ (x =? y) = match compare x y with Eq => true | _ => false end.
+Proof.
+apply eq_true_iff_eq. rewrite eqb_eq, <- compare_eq_iff.
+destruct compare; now split.
+Qed.
+
+Lemma ltb_compare x y :
+ (x <? y) = match compare x y with Lt => true | _ => false end.
+Proof.
+apply eq_true_iff_eq. rewrite ltb_lt, <- compare_lt_iff.
+destruct compare; now split.
+Qed.
+
+Lemma leb_compare x y :
+ (x <=? y) = match compare x y with Gt => false | _ => true end.
+Proof.
+apply eq_true_iff_eq. rewrite leb_le, <- compare_le_iff.
+destruct compare; split; try easy. now destruct 1.
+Qed.
+
+End BoolOrderFacts.
diff --git a/theories/Structures/OrdersLists.v b/theories/Structures/OrdersLists.v
index 2ed07026..f83b6377 100644
--- a/theories/Structures/OrdersLists.v
+++ b/theories/Structures/OrdersLists.v
@@ -86,11 +86,11 @@ Module KeyOrderedType(Import O:OrderedType).
(* eqk, eqke are equalities, ltk is a strict order *)
- Global Instance eqk_equiv : Equivalence eqk.
+ Global Instance eqk_equiv : Equivalence eqk := _.
- Global Instance eqke_equiv : Equivalence eqke.
+ Global Instance eqke_equiv : Equivalence eqke := _.
- Global Instance ltk_strorder : StrictOrder ltk.
+ Global Instance ltk_strorder : StrictOrder ltk := _.
Global Instance ltk_compat : Proper (eqk==>eqk==>iff) ltk.
Proof. unfold eqk, ltk; auto with *. Qed.