summaryrefslogtreecommitdiff
path: root/theories/Structures/GenericMinMax.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Structures/GenericMinMax.v')
-rw-r--r--theories/Structures/GenericMinMax.v656
1 files changed, 656 insertions, 0 deletions
diff --git a/theories/Structures/GenericMinMax.v b/theories/Structures/GenericMinMax.v
new file mode 100644
index 00000000..68f20189
--- /dev/null
+++ b/theories/Structures/GenericMinMax.v
@@ -0,0 +1,656 @@
+(***********************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
+(* \VV/ *************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(***********************************************************************)
+
+Require Import Orders OrdersTac OrdersFacts Setoid Morphisms Basics.
+
+(** * A Generic construction of min and max *)
+
+(** ** First, an interface for types with [max] and/or [min] *)
+
+Module Type HasMax (Import E:EqLe').
+ Parameter Inline max : t -> t -> t.
+ Parameter max_l : forall x y, y<=x -> max x y == x.
+ Parameter max_r : forall x y, x<=y -> max x y == y.
+End HasMax.
+
+Module Type HasMin (Import E:EqLe').
+ Parameter Inline min : t -> t -> t.
+ Parameter min_l : forall x y, x<=y -> min x y == x.
+ Parameter min_r : forall x y, y<=x -> min x y == y.
+End HasMin.
+
+Module Type HasMinMax (E:EqLe) := HasMax E <+ HasMin E.
+
+
+(** ** Any [OrderedTypeFull] can be equipped by [max] and [min]
+ based on the compare function. *)
+
+Definition gmax {A} (cmp : A->A->comparison) x y :=
+ match cmp x y with Lt => y | _ => x end.
+Definition gmin {A} (cmp : A->A->comparison) x y :=
+ match cmp x y with Gt => y | _ => x end.
+
+Module GenericMinMax (Import O:OrderedTypeFull') <: HasMinMax O.
+
+ Definition max := gmax O.compare.
+ Definition min := gmin O.compare.
+
+ Lemma ge_not_lt : forall x y, y<=x -> x<y -> False.
+ Proof.
+ intros x y H H'.
+ apply (StrictOrder_Irreflexive x).
+ rewrite le_lteq in *; destruct H as [H|H].
+ transitivity y; auto.
+ rewrite H in H'; auto.
+ Qed.
+
+ Lemma max_l : forall x y, y<=x -> max x y == x.
+ Proof.
+ intros. unfold max, gmax. case compare_spec; auto with relations.
+ intros; elim (ge_not_lt x y); auto.
+ Qed.
+
+ Lemma max_r : forall x y, x<=y -> max x y == y.
+ Proof.
+ intros. unfold max, gmax. case compare_spec; auto with relations.
+ intros; elim (ge_not_lt y x); auto.
+ Qed.
+
+ Lemma min_l : forall x y, x<=y -> min x y == x.
+ Proof.
+ intros. unfold min, gmin. case compare_spec; auto with relations.
+ intros; elim (ge_not_lt y x); auto.
+ Qed.
+
+ Lemma min_r : forall x y, y<=x -> min x y == y.
+ Proof.
+ intros. unfold min, gmin. case compare_spec; auto with relations.
+ intros; elim (ge_not_lt x y); auto.
+ Qed.
+
+End GenericMinMax.
+
+
+(** ** Consequences of the minimalist interface: facts about [max]. *)
+
+Module MaxLogicalProperties (Import O:TotalOrder')(Import M:HasMax O).
+ Module Import T := !MakeOrderTac O.
+
+(** An alternative caracterisation of [max], equivalent to
+ [max_l /\ max_r] *)
+
+Lemma max_spec : forall n m,
+ (n < m /\ max n m == m) \/ (m <= n /\ max n m == n).
+Proof.
+ intros n m.
+ destruct (lt_total n m); [left|right].
+ split; auto. apply max_r. rewrite le_lteq; auto.
+ assert (m <= n) by (rewrite le_lteq; intuition).
+ split; auto. apply max_l; auto.
+Qed.
+
+(** A more symmetric version of [max_spec], based only on [le].
+ Beware that left and right alternatives overlap. *)
+
+Lemma max_spec_le : forall n m,
+ (n <= m /\ max n m == m) \/ (m <= n /\ max n m == n).
+Proof.
+ intros. destruct (max_spec n m); [left|right]; intuition; order.
+Qed.
+
+Instance : Proper (eq==>eq==>iff) le.
+Proof. repeat red. intuition order. Qed.
+
+Instance max_compat : Proper (eq==>eq==>eq) max.
+Proof.
+intros x x' Hx y y' Hy.
+assert (H1 := max_spec x y). assert (H2 := max_spec x' y').
+set (m := max x y) in *; set (m' := max x' y') in *; clearbody m m'.
+rewrite <- Hx, <- Hy in *.
+destruct (lt_total x y); intuition order.
+Qed.
+
+
+(** A function satisfying the same specification is equal to [max]. *)
+
+Lemma max_unicity : forall n m p,
+ ((n < m /\ p == m) \/ (m <= n /\ p == n)) -> p == max n m.
+Proof.
+ intros. assert (Hm := max_spec n m).
+ destruct (lt_total n m); intuition; order.
+Qed.
+
+Lemma max_unicity_ext : forall f,
+ (forall n m, (n < m /\ f n m == m) \/ (m <= n /\ f n m == n)) ->
+ (forall n m, f n m == max n m).
+Proof.
+ intros. apply max_unicity; auto.
+Qed.
+
+(** [max] commutes with monotone functions. *)
+
+Lemma max_mono: forall f,
+ (Proper (eq ==> eq) f) ->
+ (Proper (le ==> le) f) ->
+ forall x y, max (f x) (f y) == f (max x y).
+Proof.
+ intros f Eqf Lef x y.
+ destruct (max_spec x y) as [(H,E)|(H,E)]; rewrite E;
+ destruct (max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
+ assert (f x <= f y) by (apply Lef; order). order.
+ assert (f y <= f x) by (apply Lef; order). order.
+Qed.
+
+(** *** Semi-lattice algebraic properties of [max] *)
+
+Lemma max_id : forall n, max n n == n.
+Proof.
+ intros. destruct (max_spec n n); intuition.
+Qed.
+
+Notation max_idempotent := max_id (only parsing).
+
+Lemma max_assoc : forall m n p, max m (max n p) == max (max m n) p.
+Proof.
+ intros.
+ destruct (max_spec n p) as [(H,Eq)|(H,Eq)]; rewrite Eq.
+ destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'.
+ destruct (max_spec m p); intuition; order. order.
+ destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'. order.
+ destruct (max_spec m p); intuition; order.
+Qed.
+
+Lemma max_comm : forall n m, max n m == max m n.
+Proof.
+ intros.
+ destruct (max_spec n m) as [(H,Eq)|(H,Eq)]; rewrite Eq.
+ destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order.
+ destruct (max_spec m n) as [(H',Eq')|(H',Eq')]; rewrite Eq'; order.
+Qed.
+
+(** *** Least-upper bound properties of [max] *)
+
+Lemma le_max_l : forall n m, n <= max n m.
+Proof.
+ intros; destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma le_max_r : forall n m, m <= max n m.
+Proof.
+ intros; destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma max_l_iff : forall n m, max n m == n <-> m <= n.
+Proof.
+ split. intro H; rewrite <- H. apply le_max_r. apply max_l.
+Qed.
+
+Lemma max_r_iff : forall n m, max n m == m <-> n <= m.
+Proof.
+ split. intro H; rewrite <- H. apply le_max_l. apply max_r.
+Qed.
+
+Lemma max_le : forall n m p, p <= max n m -> p <= n \/ p <= m.
+Proof.
+ intros n m p H; destruct (max_spec n m);
+ [right|left]; intuition; order.
+Qed.
+
+Lemma max_le_iff : forall n m p, p <= max n m <-> p <= n \/ p <= m.
+Proof.
+ intros. split. apply max_le.
+ destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma max_lt_iff : forall n m p, p < max n m <-> p < n \/ p < m.
+Proof.
+ intros. destruct (max_spec n m); intuition;
+ order || (right; order) || (left; order).
+Qed.
+
+Lemma max_lub_l : forall n m p, max n m <= p -> n <= p.
+Proof.
+ intros; destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma max_lub_r : forall n m p, max n m <= p -> m <= p.
+Proof.
+ intros; destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma max_lub : forall n m p, n <= p -> m <= p -> max n m <= p.
+Proof.
+ intros; destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma max_lub_iff : forall n m p, max n m <= p <-> n <= p /\ m <= p.
+Proof.
+ intros; destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma max_lub_lt : forall n m p, n < p -> m < p -> max n m < p.
+Proof.
+ intros; destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma max_lub_lt_iff : forall n m p, max n m < p <-> n < p /\ m < p.
+Proof.
+ intros; destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma max_le_compat_l : forall n m p, n <= m -> max p n <= max p m.
+Proof.
+ intros.
+ destruct (max_spec p n) as [(LT,E)|(LE,E)]; rewrite E.
+ assert (LE' := le_max_r p m). order.
+ apply le_max_l.
+Qed.
+
+Lemma max_le_compat_r : forall n m p, n <= m -> max n p <= max m p.
+Proof.
+ intros. rewrite (max_comm n p), (max_comm m p).
+ auto using max_le_compat_l.
+Qed.
+
+Lemma max_le_compat : forall n m p q, n <= m -> p <= q ->
+ max n p <= max m q.
+Proof.
+ intros n m p q Hnm Hpq.
+ assert (LE := max_le_compat_l _ _ m Hpq).
+ assert (LE' := max_le_compat_r _ _ p Hnm).
+ order.
+Qed.
+
+End MaxLogicalProperties.
+
+
+(** ** Properties concernant [min], then both [min] and [max].
+
+ To avoid too much code duplication, we exploit that [min] can be
+ seen as a [max] of the reversed order.
+*)
+
+Module MinMaxLogicalProperties (Import O:TotalOrder')(Import M:HasMinMax O).
+ Include MaxLogicalProperties O M.
+ Import T.
+
+ Module ORev := TotalOrderRev O.
+ Module MRev <: HasMax ORev.
+ Definition max x y := M.min y x.
+ Definition max_l x y := M.min_r y x.
+ Definition max_r x y := M.min_l y x.
+ End MRev.
+ Module MPRev := MaxLogicalProperties ORev MRev.
+
+Instance min_compat : Proper (eq==>eq==>eq) min.
+Proof. intros x x' Hx y y' Hy. apply MPRev.max_compat; assumption. Qed.
+
+Lemma min_spec : forall n m,
+ (n < m /\ min n m == n) \/ (m <= n /\ min n m == m).
+Proof. intros. exact (MPRev.max_spec m n). Qed.
+
+Lemma min_spec_le : forall n m,
+ (n <= m /\ min n m == n) \/ (m <= n /\ min n m == m).
+Proof. intros. exact (MPRev.max_spec_le m n). Qed.
+
+Lemma min_mono: forall f,
+ (Proper (eq ==> eq) f) ->
+ (Proper (le ==> le) f) ->
+ forall x y, min (f x) (f y) == f (min x y).
+Proof.
+ intros. apply MPRev.max_mono; auto. compute in *; eauto.
+Qed.
+
+Lemma min_unicity : forall n m p,
+ ((n < m /\ p == n) \/ (m <= n /\ p == m)) -> p == min n m.
+Proof. intros n m p. apply MPRev.max_unicity. Qed.
+
+Lemma min_unicity_ext : forall f,
+ (forall n m, (n < m /\ f n m == n) \/ (m <= n /\ f n m == m)) ->
+ (forall n m, f n m == min n m).
+Proof. intros f H n m. apply MPRev.max_unicity, H; auto. Qed.
+
+Lemma min_id : forall n, min n n == n.
+Proof. intros. exact (MPRev.max_id n). Qed.
+
+Notation min_idempotent := min_id (only parsing).
+
+Lemma min_assoc : forall m n p, min m (min n p) == min (min m n) p.
+Proof. intros. symmetry; apply MPRev.max_assoc. Qed.
+
+Lemma min_comm : forall n m, min n m == min m n.
+Proof. intros. exact (MPRev.max_comm m n). Qed.
+
+Lemma le_min_r : forall n m, min n m <= m.
+Proof. intros. exact (MPRev.le_max_l m n). Qed.
+
+Lemma le_min_l : forall n m, min n m <= n.
+Proof. intros. exact (MPRev.le_max_r m n). Qed.
+
+Lemma min_l_iff : forall n m, min n m == n <-> n <= m.
+Proof. intros n m. exact (MPRev.max_r_iff m n). Qed.
+
+Lemma min_r_iff : forall n m, min n m == m <-> m <= n.
+Proof. intros n m. exact (MPRev.max_l_iff m n). Qed.
+
+Lemma min_le : forall n m p, min n m <= p -> n <= p \/ m <= p.
+Proof. intros n m p H. destruct (MPRev.max_le _ _ _ H); auto. Qed.
+
+Lemma min_le_iff : forall n m p, min n m <= p <-> n <= p \/ m <= p.
+Proof. intros n m p. rewrite (MPRev.max_le_iff m n p); intuition. Qed.
+
+Lemma min_lt_iff : forall n m p, min n m < p <-> n < p \/ m < p.
+Proof. intros n m p. rewrite (MPRev.max_lt_iff m n p); intuition. Qed.
+
+Lemma min_glb_l : forall n m p, p <= min n m -> p <= n.
+Proof. intros n m. exact (MPRev.max_lub_r m n). Qed.
+
+Lemma min_glb_r : forall n m p, p <= min n m -> p <= m.
+Proof. intros n m. exact (MPRev.max_lub_l m n). Qed.
+
+Lemma min_glb : forall n m p, p <= n -> p <= m -> p <= min n m.
+Proof. intros. apply MPRev.max_lub; auto. Qed.
+
+Lemma min_glb_iff : forall n m p, p <= min n m <-> p <= n /\ p <= m.
+Proof. intros. rewrite (MPRev.max_lub_iff m n p); intuition. Qed.
+
+Lemma min_glb_lt : forall n m p, p < n -> p < m -> p < min n m.
+Proof. intros. apply MPRev.max_lub_lt; auto. Qed.
+
+Lemma min_glb_lt_iff : forall n m p, p < min n m <-> p < n /\ p < m.
+Proof. intros. rewrite (MPRev.max_lub_lt_iff m n p); intuition. Qed.
+
+Lemma min_le_compat_l : forall n m p, n <= m -> min p n <= min p m.
+Proof. intros n m. exact (MPRev.max_le_compat_r m n). Qed.
+
+Lemma min_le_compat_r : forall n m p, n <= m -> min n p <= min m p.
+Proof. intros n m. exact (MPRev.max_le_compat_l m n). Qed.
+
+Lemma min_le_compat : forall n m p q, n <= m -> p <= q ->
+ min n p <= min m q.
+Proof. intros. apply MPRev.max_le_compat; auto. Qed.
+
+
+(** *** Combined properties of min and max *)
+
+Lemma min_max_absorption : forall n m, max n (min n m) == n.
+Proof.
+ intros.
+ destruct (min_spec n m) as [(C,E)|(C,E)]; rewrite E.
+ apply max_l. order.
+ destruct (max_spec n m); intuition; order.
+Qed.
+
+Lemma max_min_absorption : forall n m, min n (max n m) == n.
+Proof.
+ intros.
+ destruct (max_spec n m) as [(C,E)|(C,E)]; rewrite E.
+ destruct (min_spec n m) as [(C',E')|(C',E')]; auto. order.
+ apply min_l; auto. order.
+Qed.
+
+(** Distributivity *)
+
+Lemma max_min_distr : forall n m p,
+ max n (min m p) == min (max n m) (max n p).
+Proof.
+ intros. symmetry. apply min_mono.
+ eauto with *.
+ repeat red; intros. apply max_le_compat_l; auto.
+Qed.
+
+Lemma min_max_distr : forall n m p,
+ min n (max m p) == max (min n m) (min n p).
+Proof.
+ intros. symmetry. apply max_mono.
+ eauto with *.
+ repeat red; intros. apply min_le_compat_l; auto.
+Qed.
+
+(** Modularity *)
+
+Lemma max_min_modular : forall n m p,
+ max n (min m (max n p)) == min (max n m) (max n p).
+Proof.
+ intros. rewrite <- max_min_distr.
+ destruct (max_spec n p) as [(C,E)|(C,E)]; rewrite E; auto with *.
+ destruct (min_spec m n) as [(C',E')|(C',E')]; rewrite E'.
+ rewrite 2 max_l; try order. rewrite min_le_iff; auto.
+ rewrite 2 max_l; try order. rewrite min_le_iff; auto.
+Qed.
+
+Lemma min_max_modular : forall n m p,
+ min n (max m (min n p)) == max (min n m) (min n p).
+Proof.
+ intros. rewrite <- min_max_distr.
+ destruct (min_spec n p) as [(C,E)|(C,E)]; rewrite E; auto with *.
+ destruct (max_spec m n) as [(C',E')|(C',E')]; rewrite E'.
+ rewrite 2 min_l; try order. rewrite max_le_iff; right; order.
+ rewrite 2 min_l; try order. rewrite max_le_iff; auto.
+Qed.
+
+(** Disassociativity *)
+
+Lemma max_min_disassoc : forall n m p,
+ min n (max m p) <= max (min n m) p.
+Proof.
+ intros. rewrite min_max_distr.
+ auto using max_le_compat_l, le_min_r.
+Qed.
+
+(** Anti-monotonicity swaps the role of [min] and [max] *)
+
+Lemma max_min_antimono : forall f,
+ Proper (eq==>eq) f ->
+ Proper (le==>inverse le) f ->
+ forall x y, max (f x) (f y) == f (min x y).
+Proof.
+ intros f Eqf Lef x y.
+ destruct (min_spec x y) as [(H,E)|(H,E)]; rewrite E;
+ destruct (max_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
+ assert (f y <= f x) by (apply Lef; order). order.
+ assert (f x <= f y) by (apply Lef; order). order.
+Qed.
+
+Lemma min_max_antimono : forall f,
+ Proper (eq==>eq) f ->
+ Proper (le==>inverse le) f ->
+ forall x y, min (f x) (f y) == f (max x y).
+Proof.
+ intros f Eqf Lef x y.
+ destruct (max_spec x y) as [(H,E)|(H,E)]; rewrite E;
+ destruct (min_spec (f x) (f y)) as [(H',E')|(H',E')]; auto.
+ assert (f y <= f x) by (apply Lef; order). order.
+ assert (f x <= f y) by (apply Lef; order). order.
+Qed.
+
+End MinMaxLogicalProperties.
+
+
+(** ** Properties requiring a decidable order *)
+
+Module MinMaxDecProperties (Import O:OrderedTypeFull')(Import M:HasMinMax O).
+
+(** Induction principles for [max]. *)
+
+Lemma max_case_strong : forall n m (P:t -> Type),
+ (forall x y, x==y -> P x -> P y) ->
+ (m<=n -> P n) -> (n<=m -> P m) -> P (max n m).
+Proof.
+intros n m P Compat Hl Hr.
+destruct (CompSpec2Type (compare_spec n m)) as [EQ|LT|GT].
+assert (n<=m) by (rewrite le_lteq; auto).
+apply (Compat m), Hr; auto. symmetry; apply max_r; auto.
+assert (n<=m) by (rewrite le_lteq; auto).
+apply (Compat m), Hr; auto. symmetry; apply max_r; auto.
+assert (m<=n) by (rewrite le_lteq; auto).
+apply (Compat n), Hl; auto. symmetry; apply max_l; auto.
+Defined.
+
+Lemma max_case : forall n m (P:t -> Type),
+ (forall x y, x == y -> P x -> P y) ->
+ P n -> P m -> P (max n m).
+Proof. intros. apply max_case_strong; auto. Defined.
+
+(** [max] returns one of its arguments. *)
+
+Lemma max_dec : forall n m, {max n m == n} + {max n m == m}.
+Proof.
+ intros n m. apply max_case; auto with relations.
+ intros x y H [E|E]; [left|right]; rewrite <-H; auto.
+Defined.
+
+(** Idem for [min] *)
+
+Lemma min_case_strong : forall n m (P:O.t -> Type),
+ (forall x y, x == y -> P x -> P y) ->
+ (n<=m -> P n) -> (m<=n -> P m) -> P (min n m).
+Proof.
+intros n m P Compat Hl Hr.
+destruct (CompSpec2Type (compare_spec n m)) as [EQ|LT|GT].
+assert (n<=m) by (rewrite le_lteq; auto).
+apply (Compat n), Hl; auto. symmetry; apply min_l; auto.
+assert (n<=m) by (rewrite le_lteq; auto).
+apply (Compat n), Hl; auto. symmetry; apply min_l; auto.
+assert (m<=n) by (rewrite le_lteq; auto).
+apply (Compat m), Hr; auto. symmetry; apply min_r; auto.
+Defined.
+
+Lemma min_case : forall n m (P:O.t -> Type),
+ (forall x y, x == y -> P x -> P y) ->
+ P n -> P m -> P (min n m).
+Proof. intros. apply min_case_strong; auto. Defined.
+
+Lemma min_dec : forall n m, {min n m == n} + {min n m == m}.
+Proof.
+ intros. apply min_case; auto with relations.
+ intros x y H [E|E]; [left|right]; rewrite <- E; auto with relations.
+Defined.
+
+End MinMaxDecProperties.
+
+Module MinMaxProperties (Import O:OrderedTypeFull')(Import M:HasMinMax O).
+ Module OT := OTF_to_TotalOrder O.
+ Include MinMaxLogicalProperties OT M.
+ Include MinMaxDecProperties O M.
+ Definition max_l := max_l.
+ Definition max_r := max_r.
+ Definition min_l := min_l.
+ Definition min_r := min_r.
+ Notation max_monotone := max_mono.
+ Notation min_monotone := min_mono.
+ Notation max_min_antimonotone := max_min_antimono.
+ Notation min_max_antimonotone := min_max_antimono.
+End MinMaxProperties.
+
+
+(** ** When the equality is Leibniz, we can skip a few [Proper] precondition. *)
+
+Module UsualMinMaxLogicalProperties
+ (Import O:UsualTotalOrder')(Import M:HasMinMax O).
+
+ Include MinMaxLogicalProperties O M.
+
+ Lemma max_monotone : forall f, Proper (le ==> le) f ->
+ forall x y, max (f x) (f y) = f (max x y).
+ Proof. intros; apply max_mono; auto. congruence. Qed.
+
+ Lemma min_monotone : forall f, Proper (le ==> le) f ->
+ forall x y, min (f x) (f y) = f (min x y).
+ Proof. intros; apply min_mono; auto. congruence. Qed.
+
+ Lemma min_max_antimonotone : forall f, Proper (le ==> inverse le) f ->
+ forall x y, min (f x) (f y) = f (max x y).
+ Proof. intros; apply min_max_antimono; auto. congruence. Qed.
+
+ Lemma max_min_antimonotone : forall f, Proper (le ==> inverse le) f ->
+ forall x y, max (f x) (f y) = f (min x y).
+ Proof. intros; apply max_min_antimono; auto. congruence. Qed.
+
+End UsualMinMaxLogicalProperties.
+
+
+Module UsualMinMaxDecProperties
+ (Import O:UsualOrderedTypeFull')(Import M:HasMinMax O).
+
+ Module P := MinMaxDecProperties O M.
+
+ Lemma max_case_strong : forall n m (P:t -> Type),
+ (m<=n -> P n) -> (n<=m -> P m) -> P (max n m).
+ Proof. intros; apply P.max_case_strong; auto. congruence. Defined.
+
+ Lemma max_case : forall n m (P:t -> Type),
+ P n -> P m -> P (max n m).
+ Proof. intros; apply max_case_strong; auto. Defined.
+
+ Lemma max_dec : forall n m, {max n m = n} + {max n m = m}.
+ Proof. exact P.max_dec. Defined.
+
+ Lemma min_case_strong : forall n m (P:O.t -> Type),
+ (n<=m -> P n) -> (m<=n -> P m) -> P (min n m).
+ Proof. intros; apply P.min_case_strong; auto. congruence. Defined.
+
+ Lemma min_case : forall n m (P:O.t -> Type),
+ P n -> P m -> P (min n m).
+ Proof. intros. apply min_case_strong; auto. Defined.
+
+ Lemma min_dec : forall n m, {min n m = n} + {min n m = m}.
+ Proof. exact P.min_dec. Defined.
+
+End UsualMinMaxDecProperties.
+
+Module UsualMinMaxProperties
+ (Import O:UsualOrderedTypeFull')(Import M:HasMinMax O).
+ Module OT := OTF_to_TotalOrder O.
+ Include UsualMinMaxLogicalProperties OT M.
+ Include UsualMinMaxDecProperties O M.
+ Definition max_l := max_l.
+ Definition max_r := max_r.
+ Definition min_l := min_l.
+ Definition min_r := min_r.
+End UsualMinMaxProperties.
+
+
+(** From [TotalOrder] and [HasMax] and [HasEqDec], we can prove
+ that the order is decidable and build an [OrderedTypeFull]. *)
+
+Module TOMaxEqDec_to_Compare
+ (Import O:TotalOrder')(Import M:HasMax O)(Import E:HasEqDec O) <: HasCompare O.
+
+ Definition compare x y :=
+ if eq_dec x y then Eq
+ else if eq_dec (M.max x y) y then Lt else Gt.
+
+ Lemma compare_spec : forall x y, CompSpec eq lt x y (compare x y).
+ Proof.
+ intros; unfold compare; repeat destruct eq_dec; auto; constructor.
+ destruct (lt_total x y); auto.
+ absurd (x==y); auto. transitivity (max x y); auto.
+ symmetry. apply max_l. rewrite le_lteq; intuition.
+ destruct (lt_total y x); auto.
+ absurd (max x y == y); auto. apply max_r; rewrite le_lteq; intuition.
+ Qed.
+
+End TOMaxEqDec_to_Compare.
+
+Module TOMaxEqDec_to_OTF (O:TotalOrder)(M:HasMax O)(E:HasEqDec O)
+ <: OrderedTypeFull
+ := O <+ E <+ TOMaxEqDec_to_Compare O M E.
+
+
+
+(** TODO: Some Remaining questions...
+
+--> Compare with a type-classes version ?
+
+--> Is max_unicity and max_unicity_ext really convenient to express
+ that any possible definition of max will in fact be equivalent ?
+
+--> Is it possible to avoid copy-paste about min even more ?
+
+*)