summaryrefslogtreecommitdiff
path: root/theories/Sorting/PermutEq.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sorting/PermutEq.v')
-rw-r--r--theories/Sorting/PermutEq.v241
1 files changed, 241 insertions, 0 deletions
diff --git a/theories/Sorting/PermutEq.v b/theories/Sorting/PermutEq.v
new file mode 100644
index 00000000..e56ff27d
--- /dev/null
+++ b/theories/Sorting/PermutEq.v
@@ -0,0 +1,241 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: PermutEq.v 8853 2006-05-23 18:17:38Z herbelin $ i*)
+
+Require Import Omega.
+Require Import Relations.
+Require Import Setoid.
+Require Import List.
+Require Import Multiset.
+Require Import Permutation.
+
+Set Implicit Arguments.
+
+(** This file is similar to [PermutSetoid], except that the equality used here
+ is Coq usual one instead of a setoid equality. In particular, we can then
+ prove the equivalence between [List.Permutation] and
+ [Permutation.permutation].
+*)
+
+Section Perm.
+
+Variable A : Set.
+Hypothesis eq_dec : forall x y:A, {x=y} + {~ x=y}.
+
+Notation permutation := (permutation _ eq_dec).
+Notation list_contents := (list_contents _ eq_dec).
+
+(** we can use [multiplicity] to define [In] and [NoDup]. *)
+
+Lemma multiplicity_In :
+ forall l a, In a l <-> 0 < multiplicity (list_contents l) a.
+Proof.
+induction l.
+simpl.
+split; inversion 1.
+simpl.
+split; intros.
+inversion_clear H.
+subst a0.
+destruct (eq_dec a a) as [_|H]; auto with arith; destruct H; auto.
+destruct (eq_dec a a0) as [H1|H1]; auto with arith; simpl.
+rewrite <- IHl; auto.
+destruct (eq_dec a a0); auto.
+simpl in H.
+right; rewrite IHl; auto.
+Qed.
+
+Lemma multiplicity_In_O :
+ forall l a, ~ In a l -> multiplicity (list_contents l) a = 0.
+Proof.
+intros l a; rewrite multiplicity_In;
+ destruct (multiplicity (list_contents l) a); auto.
+destruct 1; auto with arith.
+Qed.
+
+Lemma multiplicity_In_S :
+ forall l a, In a l -> multiplicity (list_contents l) a >= 1.
+Proof.
+intros l a; rewrite multiplicity_In; auto.
+Qed.
+
+Lemma multiplicity_NoDup :
+ forall l, NoDup l <-> (forall a, multiplicity (list_contents l) a <= 1).
+Proof.
+induction l.
+simpl.
+split; auto with arith.
+intros; apply NoDup_nil.
+split; simpl.
+inversion_clear 1.
+rewrite IHl in H1.
+intros; destruct (eq_dec a a0) as [H2|H2]; simpl; auto.
+subst a0.
+rewrite multiplicity_In_O; auto.
+intros; constructor.
+rewrite multiplicity_In.
+generalize (H a).
+destruct (eq_dec a a) as [H0|H0].
+destruct (multiplicity (list_contents l) a); auto with arith.
+simpl; inversion 1.
+inversion H3.
+destruct H0; auto.
+rewrite IHl; intros.
+generalize (H a0); auto with arith.
+destruct (eq_dec a a0); simpl; auto with arith.
+Qed.
+
+Lemma NoDup_permut :
+ forall l l', NoDup l -> NoDup l' ->
+ (forall x, In x l <-> In x l') -> permutation l l'.
+Proof.
+intros.
+red; unfold meq; intros.
+rewrite multiplicity_NoDup in H, H0.
+generalize (H a) (H0 a) (H1 a); clear H H0 H1.
+do 2 rewrite multiplicity_In.
+destruct 3; omega.
+Qed.
+
+(** Permutation is compatible with In. *)
+Lemma permut_In_In :
+ forall l1 l2 e, permutation l1 l2 -> In e l1 -> In e l2.
+Proof.
+unfold Permutation.permutation, meq; intros l1 l2 e P IN.
+generalize (P e); clear P.
+destruct (In_dec eq_dec e l2) as [H|H]; auto.
+rewrite (multiplicity_In_O _ _ H).
+intros.
+generalize (multiplicity_In_S _ _ IN).
+rewrite H0.
+inversion 1.
+Qed.
+
+Lemma permut_cons_In :
+ forall l1 l2 e, permutation (e :: l1) l2 -> In e l2.
+Proof.
+intros; eapply permut_In_In; eauto.
+red; auto.
+Qed.
+
+(** Permutation of an empty list. *)
+Lemma permut_nil :
+ forall l, permutation l nil -> l = nil.
+Proof.
+intro l; destruct l as [ | e l ]; trivial.
+assert (In e (e::l)) by (red; auto).
+intro Abs; generalize (permut_In_In _ Abs H).
+inversion 1.
+Qed.
+
+(** When used with [eq], this permutation notion is equivalent to
+ the one defined in [List.v]. *)
+
+Lemma permutation_Permutation :
+ forall l l', Permutation l l' <-> permutation l l'.
+Proof.
+split.
+induction 1.
+apply permut_refl.
+apply permut_cons; auto.
+change (permutation (y::x::l) ((x::nil)++y::l)).
+apply permut_add_cons_inside; simpl; apply permut_refl.
+apply permut_tran with l'; auto.
+revert l'.
+induction l.
+intros.
+rewrite (permut_nil (permut_sym H)).
+apply Permutation_refl.
+intros.
+destruct (In_split _ _ (permut_cons_In H)) as (h2,(t2,H1)).
+subst l'.
+apply Permutation_cons_app.
+apply IHl.
+apply permut_remove_hd with a; auto.
+Qed.
+
+(** Permutation for short lists. *)
+
+Lemma permut_length_1:
+ forall a b, permutation (a :: nil) (b :: nil) -> a=b.
+Proof.
+intros a b; unfold Permutation.permutation, meq; intro P;
+generalize (P b); clear P; simpl.
+destruct (eq_dec b b) as [H|H]; [ | destruct H; auto].
+destruct (eq_dec a b); simpl; auto; intros; discriminate.
+Qed.
+
+Lemma permut_length_2 :
+ forall a1 b1 a2 b2, permutation (a1 :: b1 :: nil) (a2 :: b2 :: nil) ->
+ (a1=a2) /\ (b1=b2) \/ (a1=b2) /\ (a2=b1).
+Proof.
+intros a1 b1 a2 b2 P.
+assert (H:=permut_cons_In P).
+inversion_clear H.
+left; split; auto.
+apply permut_length_1.
+red; red; intros.
+generalize (P a); clear P; simpl.
+destruct (eq_dec a1 a) as [H2|H2];
+ destruct (eq_dec a2 a) as [H3|H3]; auto.
+destruct H3; transitivity a1; auto.
+destruct H2; transitivity a2; auto.
+right.
+inversion_clear H0; [|inversion H].
+split; auto.
+apply permut_length_1.
+red; red; intros.
+generalize (P a); clear P; simpl.
+destruct (eq_dec a1 a) as [H2|H2];
+ destruct (eq_dec b2 a) as [H3|H3]; auto.
+simpl; rewrite <- plus_n_Sm; inversion 1; auto.
+destruct H3; transitivity a1; auto.
+destruct H2; transitivity b2; auto.
+Qed.
+
+(** Permutation is compatible with length. *)
+Lemma permut_length :
+ forall l1 l2, permutation l1 l2 -> length l1 = length l2.
+Proof.
+induction l1; intros l2 H.
+rewrite (permut_nil (permut_sym H)); auto.
+destruct (In_split _ _ (permut_cons_In H)) as (h2,(t2,H1)).
+subst l2.
+rewrite app_length.
+simpl; rewrite <- plus_n_Sm; f_equal.
+rewrite <- app_length.
+apply IHl1.
+apply permut_remove_hd with a; auto.
+Qed.
+
+Variable B : Set.
+Variable eqB_dec : forall x y:B, { x=y }+{ ~x=y }.
+
+(** Permutation is compatible with map. *)
+
+Lemma permutation_map :
+ forall f l1 l2, permutation l1 l2 ->
+ Permutation.permutation _ eqB_dec (map f l1) (map f l2).
+Proof.
+intros f; induction l1.
+intros l2 P; rewrite (permut_nil (permut_sym P)); apply permut_refl.
+intros l2 P.
+simpl.
+destruct (In_split _ _ (permut_cons_In P)) as (h2,(t2,H1)).
+subst l2.
+rewrite map_app.
+simpl.
+apply permut_add_cons_inside.
+rewrite <- map_app.
+apply IHl1; auto.
+apply permut_remove_hd with a; auto.
+Qed.
+
+End Perm.
+