summaryrefslogtreecommitdiff
path: root/theories/Sorting/Heap.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sorting/Heap.v')
-rw-r--r--theories/Sorting/Heap.v227
1 files changed, 227 insertions, 0 deletions
diff --git a/theories/Sorting/Heap.v b/theories/Sorting/Heap.v
new file mode 100644
index 00000000..41594749
--- /dev/null
+++ b/theories/Sorting/Heap.v
@@ -0,0 +1,227 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Heap.v,v 1.3.2.1 2004/07/16 19:31:19 herbelin Exp $ i*)
+
+(** A development of Treesort on Heap trees *)
+
+(* G. Huet 1-9-95 uses Multiset *)
+
+Require Import List.
+Require Import Multiset.
+Require Import Permutation.
+Require Import Relations.
+Require Import Sorting.
+
+
+Section defs.
+
+Variable A : Set.
+Variable leA : relation A.
+Variable eqA : relation A.
+
+Let gtA (x y:A) := ~ leA x y.
+
+Hypothesis leA_dec : forall x y:A, {leA x y} + {leA y x}.
+Hypothesis eqA_dec : forall x y:A, {eqA x y} + {~ eqA x y}.
+Hypothesis leA_refl : forall x y:A, eqA x y -> leA x y.
+Hypothesis leA_trans : forall x y z:A, leA x y -> leA y z -> leA x z.
+Hypothesis leA_antisym : forall x y:A, leA x y -> leA y x -> eqA x y.
+
+Hint Resolve leA_refl.
+Hint Immediate eqA_dec leA_dec leA_antisym.
+
+Let emptyBag := EmptyBag A.
+Let singletonBag := SingletonBag _ eqA_dec.
+
+Inductive Tree : Set :=
+ | Tree_Leaf : Tree
+ | Tree_Node : A -> Tree -> Tree -> Tree.
+
+(** [a] is lower than a Tree [T] if [T] is a Leaf
+ or [T] is a Node holding [b>a] *)
+
+Definition leA_Tree (a:A) (t:Tree) :=
+ match t with
+ | Tree_Leaf => True
+ | Tree_Node b T1 T2 => leA a b
+ end.
+
+Lemma leA_Tree_Leaf : forall a:A, leA_Tree a Tree_Leaf.
+Proof.
+simpl in |- *; auto with datatypes.
+Qed.
+
+Lemma leA_Tree_Node :
+ forall (a b:A) (G D:Tree), leA a b -> leA_Tree a (Tree_Node b G D).
+Proof.
+simpl in |- *; auto with datatypes.
+Qed.
+
+Hint Resolve leA_Tree_Leaf leA_Tree_Node.
+
+
+(** The heap property *)
+
+Inductive is_heap : Tree -> Prop :=
+ | nil_is_heap : is_heap Tree_Leaf
+ | node_is_heap :
+ forall (a:A) (T1 T2:Tree),
+ leA_Tree a T1 ->
+ leA_Tree a T2 ->
+ is_heap T1 -> is_heap T2 -> is_heap (Tree_Node a T1 T2).
+
+Hint Constructors is_heap.
+
+Lemma invert_heap :
+ forall (a:A) (T1 T2:Tree),
+ is_heap (Tree_Node a T1 T2) ->
+ leA_Tree a T1 /\ leA_Tree a T2 /\ is_heap T1 /\ is_heap T2.
+Proof.
+intros; inversion H; auto with datatypes.
+Qed.
+
+(* This lemma ought to be generated automatically by the Inversion tools *)
+Lemma is_heap_rec :
+ forall P:Tree -> Set,
+ P Tree_Leaf ->
+ (forall (a:A) (T1 T2:Tree),
+ leA_Tree a T1 ->
+ leA_Tree a T2 ->
+ is_heap T1 -> P T1 -> is_heap T2 -> P T2 -> P (Tree_Node a T1 T2)) ->
+ forall T:Tree, is_heap T -> P T.
+Proof.
+simple induction T; auto with datatypes.
+intros a G PG D PD PN.
+elim (invert_heap a G D); auto with datatypes.
+intros H1 H2; elim H2; intros H3 H4; elim H4; intros.
+apply H0; auto with datatypes.
+Qed.
+
+Lemma low_trans :
+ forall (T:Tree) (a b:A), leA a b -> leA_Tree b T -> leA_Tree a T.
+Proof.
+simple induction T; auto with datatypes.
+intros; simpl in |- *; apply leA_trans with b; auto with datatypes.
+Qed.
+
+(** contents of a tree as a multiset *)
+
+(** Nota Bene : In what follows the definition of SingletonBag
+ in not used. Actually, we could just take as postulate:
+ [Parameter SingletonBag : A->multiset]. *)
+
+Fixpoint contents (t:Tree) : multiset A :=
+ match t with
+ | Tree_Leaf => emptyBag
+ | Tree_Node a t1 t2 =>
+ munion (contents t1) (munion (contents t2) (singletonBag a))
+ end.
+
+
+(** equivalence of two trees is equality of corresponding multisets *)
+
+Definition equiv_Tree (t1 t2:Tree) := meq (contents t1) (contents t2).
+
+
+(** specification of heap insertion *)
+
+Inductive insert_spec (a:A) (T:Tree) : Set :=
+ insert_exist :
+ forall T1:Tree,
+ is_heap T1 ->
+ meq (contents T1) (munion (contents T) (singletonBag a)) ->
+ (forall b:A, leA b a -> leA_Tree b T -> leA_Tree b T1) ->
+ insert_spec a T.
+
+
+Lemma insert : forall T:Tree, is_heap T -> forall a:A, insert_spec a T.
+Proof.
+simple induction 1; intros.
+apply insert_exist with (Tree_Node a Tree_Leaf Tree_Leaf);
+ auto with datatypes.
+simpl in |- *; unfold meq, munion in |- *; auto with datatypes.
+elim (leA_dec a a0); intros.
+elim (H3 a0); intros.
+apply insert_exist with (Tree_Node a T2 T0); auto with datatypes.
+simpl in |- *; apply treesort_twist1; trivial with datatypes.
+elim (H3 a); intros T3 HeapT3 ConT3 LeA.
+apply insert_exist with (Tree_Node a0 T2 T3); auto with datatypes.
+apply node_is_heap; auto with datatypes.
+apply low_trans with a; auto with datatypes.
+apply LeA; auto with datatypes.
+apply low_trans with a; auto with datatypes.
+simpl in |- *; apply treesort_twist2; trivial with datatypes.
+Qed.
+
+(** building a heap from a list *)
+
+Inductive build_heap (l:list A) : Set :=
+ heap_exist :
+ forall T:Tree,
+ is_heap T ->
+ meq (list_contents _ eqA_dec l) (contents T) -> build_heap l.
+
+Lemma list_to_heap : forall l:list A, build_heap l.
+Proof.
+simple induction l.
+apply (heap_exist nil Tree_Leaf); auto with datatypes.
+simpl in |- *; unfold meq in |- *; auto with datatypes.
+simple induction 1.
+intros T i m; elim (insert T i a).
+intros; apply heap_exist with T1; simpl in |- *; auto with datatypes.
+apply meq_trans with (munion (contents T) (singletonBag a)).
+apply meq_trans with (munion (singletonBag a) (contents T)).
+apply meq_right; trivial with datatypes.
+apply munion_comm.
+apply meq_sym; trivial with datatypes.
+Qed.
+
+
+(** building the sorted list *)
+
+Inductive flat_spec (T:Tree) : Set :=
+ flat_exist :
+ forall l:list A,
+ sort leA l ->
+ (forall a:A, leA_Tree a T -> lelistA leA a l) ->
+ meq (contents T) (list_contents _ eqA_dec l) -> flat_spec T.
+
+Lemma heap_to_list : forall T:Tree, is_heap T -> flat_spec T.
+Proof.
+ intros T h; elim h; intros.
+ apply flat_exist with (nil (A:=A)); auto with datatypes.
+ elim H2; intros l1 s1 i1 m1; elim H4; intros l2 s2 i2 m2.
+ elim (merge _ leA_dec eqA_dec s1 s2); intros.
+ apply flat_exist with (a :: l); simpl in |- *; auto with datatypes.
+ apply meq_trans with
+ (munion (list_contents _ eqA_dec l1)
+ (munion (list_contents _ eqA_dec l2) (singletonBag a))).
+ apply meq_congr; auto with datatypes.
+ apply meq_trans with
+ (munion (singletonBag a)
+ (munion (list_contents _ eqA_dec l1) (list_contents _ eqA_dec l2))).
+ apply munion_rotate.
+ apply meq_right; apply meq_sym; trivial with datatypes.
+Qed.
+
+(** specification of treesort *)
+
+Theorem treesort :
+ forall l:list A, {m : list A | sort leA m & permutation _ eqA_dec l m}.
+Proof.
+ intro l; unfold permutation in |- *.
+ elim (list_to_heap l).
+ intros.
+ elim (heap_to_list T); auto with datatypes.
+ intros.
+ exists l0; auto with datatypes.
+ apply meq_trans with (contents T); trivial with datatypes.
+Qed.
+
+End defs. \ No newline at end of file