summaryrefslogtreecommitdiff
path: root/theories/Sets/Powerset_facts.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Powerset_facts.v')
-rw-r--r--theories/Sets/Powerset_facts.v36
1 files changed, 18 insertions, 18 deletions
diff --git a/theories/Sets/Powerset_facts.v b/theories/Sets/Powerset_facts.v
index f756f985..58e3f44d 100644
--- a/theories/Sets/Powerset_facts.v
+++ b/theories/Sets/Powerset_facts.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -42,7 +42,7 @@ Section Sets_as_an_algebra.
Theorem Empty_set_zero' : forall x:U, Add U (Empty_set U) x = Singleton U x.
Proof.
- unfold Add at 1 in |- *; auto using Empty_set_zero with sets.
+ unfold Add at 1; auto using Empty_set_zero with sets.
Qed.
Lemma less_than_empty :
@@ -76,7 +76,7 @@ Section Sets_as_an_algebra.
Theorem Couple_as_union :
forall x y:U, Union U (Singleton U x) (Singleton U y) = Couple U x y.
Proof.
- intros x y; apply Extensionality_Ensembles; split; red in |- *.
+ intros x y; apply Extensionality_Ensembles; split; red.
intros x0 H'; elim H'; (intros x1 H'0; elim H'0; auto with sets).
intros x0 H'; elim H'; auto with sets.
Qed.
@@ -86,7 +86,7 @@ Section Sets_as_an_algebra.
Union U (Union U (Singleton U x) (Singleton U y)) (Singleton U z) =
Triple U x y z.
Proof.
- intros x y z; apply Extensionality_Ensembles; split; red in |- *.
+ intros x y z; apply Extensionality_Ensembles; split; red.
intros x0 H'; elim H'.
intros x1 H'0; elim H'0; (intros x2 H'1; elim H'1; auto with sets).
intros x1 H'0; elim H'0; auto with sets.
@@ -114,7 +114,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B.
apply Extensionality_Ensembles.
- split; red in |- *; intros x H'; elim H'; auto with sets.
+ split; red; intros x H'; elim H'; auto with sets.
Qed.
Theorem Distributivity :
@@ -124,7 +124,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B C.
apply Extensionality_Ensembles.
- split; red in |- *; intros x H'.
+ split; red; intros x H'.
elim H'.
intros x0 H'0 H'1; generalize H'0.
elim H'1; auto with sets.
@@ -138,7 +138,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B C.
apply Extensionality_Ensembles.
- split; red in |- *; intros x H'.
+ split; red; intros x H'.
elim H'; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
elim H'.
@@ -151,15 +151,15 @@ Section Sets_as_an_algebra.
Theorem Union_add :
forall (A B:Ensemble U) (x:U), Add U (Union U A B) x = Union U A (Add U B x).
Proof.
- unfold Add in |- *; auto using Union_associative with sets.
+ unfold Add; auto using Union_associative with sets.
Qed.
Theorem Non_disjoint_union :
forall (X:Ensemble U) (x:U), In U X x -> Add U X x = X.
Proof.
- intros X x H'; unfold Add in |- *.
- apply Extensionality_Ensembles; red in |- *.
- split; red in |- *; auto with sets.
+ intros X x H'; unfold Add.
+ apply Extensionality_Ensembles; red.
+ split; red; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
intros t H'1; elim H'1; auto with sets.
Qed.
@@ -167,12 +167,12 @@ Section Sets_as_an_algebra.
Theorem Non_disjoint_union' :
forall (X:Ensemble U) (x:U), ~ In U X x -> Subtract U X x = X.
Proof.
- intros X x H'; unfold Subtract in |- *.
+ intros X x H'; unfold Subtract.
apply Extensionality_Ensembles.
- split; red in |- *; auto with sets.
+ split; red; auto with sets.
intros x0 H'0; elim H'0; auto with sets.
intros x0 H'0; apply Setminus_intro; auto with sets.
- red in |- *; intro H'1; elim H'1.
+ red; intro H'1; elim H'1.
lapply (Singleton_inv U x x0); auto with sets.
intro H'4; apply H'; rewrite H'4; auto with sets.
Qed.
@@ -186,7 +186,7 @@ Section Sets_as_an_algebra.
forall (A B:Ensemble U) (x:U),
Included U A B -> Included U (Add U A x) (Add U B x).
Proof.
- intros A B x H'; red in |- *; auto with sets.
+ intros A B x H'; red; auto with sets.
intros x0 H'0.
lapply (Add_inv U A x x0); auto with sets.
intro H'1; elim H'1;
@@ -198,7 +198,7 @@ Section Sets_as_an_algebra.
forall (A B:Ensemble U) (x:U),
~ In U A x -> Included U (Add U A x) (Add U B x) -> Included U A B.
Proof.
- unfold Included in |- *.
+ unfold Included.
intros A B x H' H'0 x0 H'1.
lapply (H'0 x0); auto with sets.
intro H'2; lapply (Add_inv U B x x0); auto with sets.
@@ -212,7 +212,7 @@ Section Sets_as_an_algebra.
forall (A:Ensemble U) (x y:U), Add U (Add U A x) y = Add U (Add U A y) x.
Proof.
intros A x y.
- unfold Add in |- *.
+ unfold Add.
rewrite (Union_associative A (Singleton U x) (Singleton U y)).
rewrite (Union_commutative (Singleton U x) (Singleton U y)).
rewrite <- (Union_associative A (Singleton U y) (Singleton U x));
@@ -234,7 +234,7 @@ Section Sets_as_an_algebra.
Proof.
intros A B x y H'; try assumption.
rewrite <- (Union_add (Add U A x) B y).
- unfold Add at 4 in |- *.
+ unfold Add at 4.
rewrite (Union_commutative A (Singleton U x)).
rewrite Union_associative.
rewrite (Union_absorbs A B H').