summaryrefslogtreecommitdiff
path: root/theories/Sets/Ensembles.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Ensembles.v')
-rw-r--r--theories/Sets/Ensembles.v38
1 files changed, 19 insertions, 19 deletions
diff --git a/theories/Sets/Ensembles.v b/theories/Sets/Ensembles.v
index c38a2fe1..0fa9c74a 100644
--- a/theories/Sets/Ensembles.v
+++ b/theories/Sets/Ensembles.v
@@ -24,27 +24,27 @@
(* in Summer 1995. Several developments by E. Ledinot were an inspiration. *)
(****************************************************************************)
-(*i $Id: Ensembles.v 9245 2006-10-17 12:53:34Z notin $ i*)
+(*i $Id$ i*)
Section Ensembles.
Variable U : Type.
-
- Definition Ensemble := U -> Prop.
+
+ Definition Ensemble := U -> Prop.
Definition In (A:Ensemble) (x:U) : Prop := A x.
-
+
Definition Included (B C:Ensemble) : Prop := forall x:U, In B x -> In C x.
-
+
Inductive Empty_set : Ensemble :=.
-
+
Inductive Full_set : Ensemble :=
Full_intro : forall x:U, In Full_set x.
-(** NB: The following definition builds-in equality of elements in [U] as
- Leibniz equality.
+(** NB: The following definition builds-in equality of elements in [U] as
+ Leibniz equality.
- This may have to be changed if we replace [U] by a Setoid on [U]
- with its own equality [eqs], with
+ This may have to be changed if we replace [U] by a Setoid on [U]
+ with its own equality [eqs], with
[In_singleton: (y: U)(eqs x y) -> (In (Singleton x) y)]. *)
Inductive Singleton (x:U) : Ensemble :=
@@ -55,7 +55,7 @@ Section Ensembles.
| Union_intror : forall x:U, In C x -> In (Union B C) x.
Definition Add (B:Ensemble) (x:U) : Ensemble := Union B (Singleton x).
-
+
Inductive Intersection (B C:Ensemble) : Ensemble :=
Intersection_intro :
forall x:U, In B x -> In C x -> In (Intersection B C) x.
@@ -63,29 +63,29 @@ Section Ensembles.
Inductive Couple (x y:U) : Ensemble :=
| Couple_l : In (Couple x y) x
| Couple_r : In (Couple x y) y.
-
+
Inductive Triple (x y z:U) : Ensemble :=
| Triple_l : In (Triple x y z) x
| Triple_m : In (Triple x y z) y
| Triple_r : In (Triple x y z) z.
-
+
Definition Complement (A:Ensemble) : Ensemble := fun x:U => ~ In A x.
-
+
Definition Setminus (B C:Ensemble) : Ensemble :=
fun x:U => In B x /\ ~ In C x.
-
+
Definition Subtract (B:Ensemble) (x:U) : Ensemble := Setminus B (Singleton x).
-
+
Inductive Disjoint (B C:Ensemble) : Prop :=
Disjoint_intro : (forall x:U, ~ In (Intersection B C) x) -> Disjoint B C.
Inductive Inhabited (B:Ensemble) : Prop :=
Inhabited_intro : forall x:U, In B x -> Inhabited B.
-
+
Definition Strict_Included (B C:Ensemble) : Prop := Included B C /\ B <> C.
-
+
Definition Same_set (B C:Ensemble) : Prop := Included B C /\ Included C B.
-
+
(** Extensionality Axiom *)
Axiom Extensionality_Ensembles : forall A B:Ensemble, Same_set A B -> A = B.