summaryrefslogtreecommitdiff
path: root/theories/Sets/Constructive_sets.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Sets/Constructive_sets.v')
-rw-r--r--theories/Sets/Constructive_sets.v18
1 files changed, 9 insertions, 9 deletions
diff --git a/theories/Sets/Constructive_sets.v b/theories/Sets/Constructive_sets.v
index e6dd8381..f559533a 100644
--- a/theories/Sets/Constructive_sets.v
+++ b/theories/Sets/Constructive_sets.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -36,24 +36,24 @@ Section Ensembles_facts.
Lemma Noone_in_empty : forall x:U, ~ In U (Empty_set U) x.
Proof.
- red in |- *; destruct 1.
+ red; destruct 1.
Qed.
Lemma Included_Empty : forall A:Ensemble U, Included U (Empty_set U) A.
Proof.
- intro; red in |- *.
+ intro; red.
intros x H; elim (Noone_in_empty x); auto with sets.
Qed.
Lemma Add_intro1 :
forall (A:Ensemble U) (x y:U), In U A y -> In U (Add U A x) y.
Proof.
- unfold Add at 1 in |- *; auto with sets.
+ unfold Add at 1; auto with sets.
Qed.
Lemma Add_intro2 : forall (A:Ensemble U) (x:U), In U (Add U A x) x.
Proof.
- unfold Add at 1 in |- *; auto with sets.
+ unfold Add at 1; auto with sets.
Qed.
Lemma Inhabited_add : forall (A:Ensemble U) (x:U), Inhabited U (Add U A x).
@@ -66,7 +66,7 @@ Section Ensembles_facts.
forall X:Ensemble U, Inhabited U X -> X <> Empty_set U.
Proof.
intros X H'; elim H'.
- intros x H'0; red in |- *; intro H'1.
+ intros x H'0; red; intro H'1.
absurd (In U X x); auto with sets.
rewrite H'1; auto using Noone_in_empty with sets.
Qed.
@@ -78,7 +78,7 @@ Section Ensembles_facts.
Lemma not_Empty_Add : forall (A:Ensemble U) (x:U), Empty_set U <> Add U A x.
Proof.
- intros; red in |- *; intro H; generalize (Add_not_Empty A x); auto with sets.
+ intros; red; intro H; generalize (Add_not_Empty A x); auto with sets.
Qed.
Lemma Singleton_inv : forall x y:U, In U (Singleton U x) y -> x = y.
@@ -121,7 +121,7 @@ Section Ensembles_facts.
forall (A B:Ensemble U) (x:U),
In U A x -> ~ In U B x -> In U (Setminus U A B) x.
Proof.
- unfold Setminus at 1 in |- *; red in |- *; auto with sets.
+ unfold Setminus at 1; red; auto with sets.
Qed.
Lemma Strict_Included_intro :
@@ -132,7 +132,7 @@ Section Ensembles_facts.
Lemma Strict_Included_strict : forall X:Ensemble U, ~ Strict_Included U X X.
Proof.
- intro X; red in |- *; intro H'; elim H'.
+ intro X; red; intro H'; elim H'.
intros H'0 H'1; elim H'1; auto with sets.
Qed.