summaryrefslogtreecommitdiff
path: root/theories/Setoids/Setoid_tac.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Setoids/Setoid_tac.v')
-rw-r--r--theories/Setoids/Setoid_tac.v595
1 files changed, 0 insertions, 595 deletions
diff --git a/theories/Setoids/Setoid_tac.v b/theories/Setoids/Setoid_tac.v
deleted file mode 100644
index cdc4eafe..00000000
--- a/theories/Setoids/Setoid_tac.v
+++ /dev/null
@@ -1,595 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Setoid_tac.v 10739 2008-04-01 14:45:20Z herbelin $ i*)
-
-Require Export Relation_Definitions.
-
-Set Implicit Arguments.
-
-(** * Definitions of [Relation_Class] and n-ary [Morphism_Theory] *)
-
-(* X will be used to distinguish covariant arguments whose type is an *)
-(* Asymmetric* relation from contravariant arguments of the same type *)
-Inductive X_Relation_Class (X: Type) : Type :=
- SymmetricReflexive :
- forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> X_Relation_Class X
- | AsymmetricReflexive : X -> forall A Aeq, reflexive A Aeq -> X_Relation_Class X
- | SymmetricAreflexive : forall A Aeq, symmetric A Aeq -> X_Relation_Class X
- | AsymmetricAreflexive : X -> forall A (Aeq : relation A), X_Relation_Class X
- | Leibniz : Type -> X_Relation_Class X.
-
-Inductive variance : Set :=
- Covariant
- | Contravariant.
-
-Definition Argument_Class := X_Relation_Class variance.
-Definition Relation_Class := X_Relation_Class unit.
-
-Inductive Reflexive_Relation_Class : Type :=
- RSymmetric :
- forall A Aeq, symmetric A Aeq -> reflexive _ Aeq -> Reflexive_Relation_Class
- | RAsymmetric :
- forall A Aeq, reflexive A Aeq -> Reflexive_Relation_Class
- | RLeibniz : Type -> Reflexive_Relation_Class.
-
-Inductive Areflexive_Relation_Class : Type :=
- | ASymmetric : forall A Aeq, symmetric A Aeq -> Areflexive_Relation_Class
- | AAsymmetric : forall A (Aeq : relation A), Areflexive_Relation_Class.
-
-Implicit Type Hole Out: Relation_Class.
-
-Definition relation_class_of_argument_class : Argument_Class -> Relation_Class.
- destruct 1.
- exact (SymmetricReflexive _ s r).
- exact (AsymmetricReflexive tt r).
- exact (SymmetricAreflexive _ s).
- exact (AsymmetricAreflexive tt Aeq).
- exact (Leibniz _ T).
-Defined.
-
-Definition carrier_of_relation_class : forall X, X_Relation_Class X -> Type.
- destruct 1.
- exact A.
- exact A.
- exact A.
- exact A.
- exact T.
-Defined.
-
-Definition relation_of_relation_class :
- forall X R, @carrier_of_relation_class X R -> carrier_of_relation_class R -> Prop.
- destruct R.
- exact Aeq.
- exact Aeq.
- exact Aeq.
- exact Aeq.
- exact (@eq T).
-Defined.
-
-Lemma about_carrier_of_relation_class_and_relation_class_of_argument_class :
- forall R,
- carrier_of_relation_class (relation_class_of_argument_class R) =
- carrier_of_relation_class R.
- destruct R; reflexivity.
-Defined.
-
-Inductive nelistT (A : Type) : Type :=
- singl : A -> nelistT A
- | necons : A -> nelistT A -> nelistT A.
-
-Definition Arguments := nelistT Argument_Class.
-
-Implicit Type In: Arguments.
-
-Definition function_type_of_morphism_signature :
- Arguments -> Relation_Class -> Type.
- intros In Out.
- induction In.
- exact (carrier_of_relation_class a -> carrier_of_relation_class Out).
- exact (carrier_of_relation_class a -> IHIn).
-Defined.
-
-Definition make_compatibility_goal_aux:
- forall In Out
- (f g: function_type_of_morphism_signature In Out), Prop.
- intros; induction In; simpl in f, g.
- induction a; simpl in f, g.
- exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
- destruct x.
- exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
- exact (forall x1 x2, Aeq x2 x1 -> relation_of_relation_class Out (f x1) (g x2)).
- exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
- destruct x.
- exact (forall x1 x2, Aeq x1 x2 -> relation_of_relation_class Out (f x1) (g x2)).
- exact (forall x1 x2, Aeq x2 x1 -> relation_of_relation_class Out (f x1) (g x2)).
- exact (forall x, relation_of_relation_class Out (f x) (g x)).
- induction a; simpl in f, g.
- exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
- destruct x.
- exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
- exact (forall x1 x2, Aeq x2 x1 -> IHIn (f x1) (g x2)).
- exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
- destruct x.
- exact (forall x1 x2, Aeq x1 x2 -> IHIn (f x1) (g x2)).
- exact (forall x1 x2, Aeq x2 x1 -> IHIn (f x1) (g x2)).
- exact (forall x, IHIn (f x) (g x)).
-Defined.
-
-Definition make_compatibility_goal :=
- (fun In Out f => make_compatibility_goal_aux In Out f f).
-
-Record Morphism_Theory In Out : Type :=
- { Function : function_type_of_morphism_signature In Out;
- Compat : make_compatibility_goal In Out Function }.
-
-
-(** The [iff] relation class *)
-
-Definition Iff_Relation_Class : Relation_Class.
- eapply (@SymmetricReflexive unit _ iff).
- exact iff_sym.
- exact iff_refl.
-Defined.
-
-(** The [impl] relation class *)
-
-Definition impl (A B: Prop) := A -> B.
-
-Theorem impl_refl: reflexive _ impl.
-Proof.
- hnf; unfold impl; tauto.
-Qed.
-
-Definition Impl_Relation_Class : Relation_Class.
- eapply (@AsymmetricReflexive unit tt _ impl).
- exact impl_refl.
-Defined.
-
-(** Every function is a morphism from Leibniz+ to Leibniz *)
-
-Definition list_of_Leibniz_of_list_of_types: nelistT Type -> Arguments.
- induction 1.
- exact (singl (Leibniz _ a)).
- exact (necons (Leibniz _ a) IHX).
-Defined.
-
-Definition morphism_theory_of_function :
- forall (In: nelistT Type) (Out: Type),
- let In' := list_of_Leibniz_of_list_of_types In in
- let Out' := Leibniz _ Out in
- function_type_of_morphism_signature In' Out' ->
- Morphism_Theory In' Out'.
- intros.
- exists X.
- induction In; unfold make_compatibility_goal; simpl.
- reflexivity.
- intro; apply (IHIn (X x)).
-Defined.
-
-(** Every predicate is a morphism from Leibniz+ to Iff_Relation_Class *)
-
-Definition morphism_theory_of_predicate :
- forall (In: nelistT Type),
- let In' := list_of_Leibniz_of_list_of_types In in
- function_type_of_morphism_signature In' Iff_Relation_Class ->
- Morphism_Theory In' Iff_Relation_Class.
- intros.
- exists X.
- induction In; unfold make_compatibility_goal; simpl.
- intro; apply iff_refl.
- intro; apply (IHIn (X x)).
-Defined.
-
-(** * Utility functions to prove that every transitive relation is a morphism *)
-
-Definition equality_morphism_of_symmetric_areflexive_transitive_relation:
- forall (A: Type)(Aeq: relation A)(sym: symmetric _ Aeq)(trans: transitive _ Aeq),
- let ASetoidClass := SymmetricAreflexive _ sym in
- (Morphism_Theory (necons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
- intros.
- exists Aeq.
- unfold make_compatibility_goal; simpl; split; eauto.
-Defined.
-
-Definition equality_morphism_of_symmetric_reflexive_transitive_relation:
- forall (A: Type)(Aeq: relation A)(refl: reflexive _ Aeq)(sym: symmetric _ Aeq)
- (trans: transitive _ Aeq), let ASetoidClass := SymmetricReflexive _ sym refl in
- (Morphism_Theory (necons ASetoidClass (singl ASetoidClass)) Iff_Relation_Class).
- intros.
- exists Aeq.
- unfold make_compatibility_goal; simpl; split; eauto.
-Defined.
-
-Definition equality_morphism_of_asymmetric_areflexive_transitive_relation:
- forall (A: Type)(Aeq: relation A)(trans: transitive _ Aeq),
- let ASetoidClass1 := AsymmetricAreflexive Contravariant Aeq in
- let ASetoidClass2 := AsymmetricAreflexive Covariant Aeq in
- (Morphism_Theory (necons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
- intros.
- exists Aeq.
- unfold make_compatibility_goal; simpl; unfold impl; eauto.
-Defined.
-
-Definition equality_morphism_of_asymmetric_reflexive_transitive_relation:
- forall (A: Type)(Aeq: relation A)(refl: reflexive _ Aeq)(trans: transitive _ Aeq),
- let ASetoidClass1 := AsymmetricReflexive Contravariant refl in
- let ASetoidClass2 := AsymmetricReflexive Covariant refl in
- (Morphism_Theory (necons ASetoidClass1 (singl ASetoidClass2)) Impl_Relation_Class).
- intros.
- exists Aeq.
- unfold make_compatibility_goal; simpl; unfold impl; eauto.
-Defined.
-
-(** * The CIC part of the reflexive tactic ([setoid_rewrite]) *)
-
-Inductive rewrite_direction : Type :=
- | Left2Right
- | Right2Left.
-
-Implicit Type dir: rewrite_direction.
-
-Definition variance_of_argument_class : Argument_Class -> option variance.
- destruct 1.
- exact None.
- exact (Some v).
- exact None.
- exact (Some v).
- exact None.
-Defined.
-
-Definition opposite_direction :=
- fun dir =>
- match dir with
- | Left2Right => Right2Left
- | Right2Left => Left2Right
- end.
-
-Lemma opposite_direction_idempotent:
- forall dir, (opposite_direction (opposite_direction dir)) = dir.
-Proof.
- destruct dir; reflexivity.
-Qed.
-
-Inductive check_if_variance_is_respected :
- option variance -> rewrite_direction -> rewrite_direction -> Prop :=
- | MSNone : forall dir dir', check_if_variance_is_respected None dir dir'
- | MSCovariant : forall dir, check_if_variance_is_respected (Some Covariant) dir dir
- | MSContravariant :
- forall dir,
- check_if_variance_is_respected (Some Contravariant) dir (opposite_direction dir).
-
-Definition relation_class_of_reflexive_relation_class:
- Reflexive_Relation_Class -> Relation_Class.
- induction 1.
- exact (SymmetricReflexive _ s r).
- exact (AsymmetricReflexive tt r).
- exact (Leibniz _ T).
-Defined.
-
-Definition relation_class_of_areflexive_relation_class:
- Areflexive_Relation_Class -> Relation_Class.
- induction 1.
- exact (SymmetricAreflexive _ s).
- exact (AsymmetricAreflexive tt Aeq).
-Defined.
-
-Definition carrier_of_reflexive_relation_class :=
- fun R => carrier_of_relation_class (relation_class_of_reflexive_relation_class R).
-
-Definition carrier_of_areflexive_relation_class :=
- fun R => carrier_of_relation_class (relation_class_of_areflexive_relation_class R).
-
-Definition relation_of_areflexive_relation_class :=
- fun R => relation_of_relation_class (relation_class_of_areflexive_relation_class R).
-
-Inductive Morphism_Context Hole dir : Relation_Class -> rewrite_direction -> Type :=
- | App :
- forall In Out dir',
- Morphism_Theory In Out -> Morphism_Context_List Hole dir dir' In ->
- Morphism_Context Hole dir Out dir'
- | ToReplace : Morphism_Context Hole dir Hole dir
- | ToKeep :
- forall S dir',
- carrier_of_reflexive_relation_class S ->
- Morphism_Context Hole dir (relation_class_of_reflexive_relation_class S) dir'
- | ProperElementToKeep :
- forall S dir' (x: carrier_of_areflexive_relation_class S),
- relation_of_areflexive_relation_class S x x ->
- Morphism_Context Hole dir (relation_class_of_areflexive_relation_class S) dir'
-with Morphism_Context_List Hole dir :
- rewrite_direction -> Arguments -> Type
-:=
- fcl_singl :
- forall S dir' dir'',
- check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' ->
- Morphism_Context Hole dir (relation_class_of_argument_class S) dir' ->
- Morphism_Context_List Hole dir dir'' (singl S)
- | fcl_cons :
- forall S L dir' dir'',
- check_if_variance_is_respected (variance_of_argument_class S) dir' dir'' ->
- Morphism_Context Hole dir (relation_class_of_argument_class S) dir' ->
- Morphism_Context_List Hole dir dir'' L ->
- Morphism_Context_List Hole dir dir'' (necons S L).
-
-Scheme Morphism_Context_rect2 := Induction for Morphism_Context Sort Type
-with Morphism_Context_List_rect2 := Induction for Morphism_Context_List Sort Type.
-
-Definition product_of_arguments : Arguments -> Type.
- induction 1.
- exact (carrier_of_relation_class a).
- exact (prod (carrier_of_relation_class a) IHX).
-Defined.
-
-Definition get_rewrite_direction: rewrite_direction -> Argument_Class -> rewrite_direction.
- intros dir R.
- destruct (variance_of_argument_class R).
- destruct v.
- exact dir. (* covariant *)
- exact (opposite_direction dir). (* contravariant *)
- exact dir. (* symmetric relation *)
-Defined.
-
-Definition directed_relation_of_relation_class:
- forall dir (R: Relation_Class),
- carrier_of_relation_class R -> carrier_of_relation_class R -> Prop.
- destruct 1.
- exact (@relation_of_relation_class unit).
- intros; exact (relation_of_relation_class _ X0 X).
-Defined.
-
-Definition directed_relation_of_argument_class:
- forall dir (R: Argument_Class),
- carrier_of_relation_class R -> carrier_of_relation_class R -> Prop.
- intros dir R.
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class R).
- exact (directed_relation_of_relation_class dir (relation_class_of_argument_class R)).
-Defined.
-
-
-Definition relation_of_product_of_arguments:
- forall dir In,
- product_of_arguments In -> product_of_arguments In -> Prop.
- induction In.
- simpl.
- exact (directed_relation_of_argument_class (get_rewrite_direction dir a) a).
-
- simpl; intros.
- destruct X; destruct X0.
- apply and.
- exact
- (directed_relation_of_argument_class (get_rewrite_direction dir a) a c c0).
- exact (IHIn p p0).
-Defined.
-
-Definition apply_morphism:
- forall In Out (m: function_type_of_morphism_signature In Out)
- (args: product_of_arguments In), carrier_of_relation_class Out.
- intros.
- induction In.
- exact (m args).
- simpl in m, args.
- destruct args.
- exact (IHIn (m c) p).
-Defined.
-
-Theorem apply_morphism_compatibility_Right2Left:
- forall In Out (m1 m2: function_type_of_morphism_signature In Out)
- (args1 args2: product_of_arguments In),
- make_compatibility_goal_aux _ _ m1 m2 ->
- relation_of_product_of_arguments Right2Left _ args1 args2 ->
- directed_relation_of_relation_class Right2Left _
- (apply_morphism _ _ m2 args1)
- (apply_morphism _ _ m1 args2).
- induction In; intros.
- simpl in m1, m2, args1, args2, H0 |- *.
- destruct a; simpl in H; hnf in H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- rewrite H0; apply H; exact H0.
-
- simpl in m1, m2, args1, args2, H0 |- *.
- destruct args1; destruct args2; simpl.
- destruct H0.
- simpl in H.
- destruct a; simpl in H.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- destruct v.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- destruct v.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- rewrite H0; apply IHIn.
- apply H.
- exact H1.
-Qed.
-
-Theorem apply_morphism_compatibility_Left2Right:
- forall In Out (m1 m2: function_type_of_morphism_signature In Out)
- (args1 args2: product_of_arguments In),
- make_compatibility_goal_aux _ _ m1 m2 ->
- relation_of_product_of_arguments Left2Right _ args1 args2 ->
- directed_relation_of_relation_class Left2Right _
- (apply_morphism _ _ m1 args1)
- (apply_morphism _ _ m2 args2).
-Proof.
- induction In; intros.
- simpl in m1, m2, args1, args2, H0 |- *.
- destruct a; simpl in H; hnf in H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- apply H; exact H0.
- destruct v; simpl in H0; apply H; exact H0.
- rewrite H0; apply H; exact H0.
-
- simpl in m1, m2, args1, args2, H0 |- *.
- destruct args1; destruct args2; simpl.
- destruct H0.
- simpl in H.
- destruct a; simpl in H.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- destruct v.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- apply H; exact H0.
- exact H1.
- apply IHIn.
- destruct v; simpl in H, H0; apply H; exact H0.
- exact H1.
- rewrite H0; apply IHIn.
- apply H.
- exact H1.
-Qed.
-
-Definition interp :
- forall Hole dir Out dir', carrier_of_relation_class Hole ->
- Morphism_Context Hole dir Out dir' -> carrier_of_relation_class Out.
- intros Hole dir Out dir' H t.
- elim t using
- (@Morphism_Context_rect2 Hole dir (fun S _ _ => carrier_of_relation_class S)
- (fun _ L fcl => product_of_arguments L));
- intros.
- exact (apply_morphism _ _ (Function m) X).
- exact H.
- exact c.
- exact x.
- simpl;
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
- exact X.
- split.
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
- exact X.
- exact X0.
-Defined.
-
-(* CSC: interp and interp_relation_class_list should be mutually defined, since
- the proof term of each one contains the proof term of the other one. However
- I cannot do that interactively (I should write the Fix by hand) *)
-Definition interp_relation_class_list :
- forall Hole dir dir' (L: Arguments), carrier_of_relation_class Hole ->
- Morphism_Context_List Hole dir dir' L -> product_of_arguments L.
- intros Hole dir dir' L H t.
- elim t using
- (@Morphism_Context_List_rect2 Hole dir (fun S _ _ => carrier_of_relation_class S)
- (fun _ L fcl => product_of_arguments L));
- intros.
- exact (apply_morphism _ _ (Function m) X).
- exact H.
- exact c.
- exact x.
- simpl;
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
- exact X.
- split.
- rewrite <-
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S);
- exact X.
- exact X0.
-Defined.
-
-Theorem setoid_rewrite:
- forall Hole dir Out dir' (E1 E2: carrier_of_relation_class Hole)
- (E: Morphism_Context Hole dir Out dir'),
- (directed_relation_of_relation_class dir Hole E1 E2) ->
- (directed_relation_of_relation_class dir' Out (interp E1 E) (interp E2 E)).
-Proof.
- intros.
- elim E using
- (@Morphism_Context_rect2 Hole dir
- (fun S dir'' E => directed_relation_of_relation_class dir'' S (interp E1 E) (interp E2 E))
- (fun dir'' L fcl =>
- relation_of_product_of_arguments dir'' _
- (interp_relation_class_list E1 fcl)
- (interp_relation_class_list E2 fcl))); intros.
- change (directed_relation_of_relation_class dir'0 Out0
- (apply_morphism _ _ (Function m) (interp_relation_class_list E1 m0))
- (apply_morphism _ _ (Function m) (interp_relation_class_list E2 m0))).
- destruct dir'0.
- apply apply_morphism_compatibility_Left2Right.
- exact (Compat m).
- exact H0.
- apply apply_morphism_compatibility_Right2Left.
- exact (Compat m).
- exact H0.
-
- exact H.
-
- unfold interp, Morphism_Context_rect2.
- (* CSC: reflexivity used here *)
- destruct S; destruct dir'0; simpl; (apply r || reflexivity).
-
- destruct dir'0; exact r.
-
- destruct S; unfold directed_relation_of_argument_class; simpl in H0 |- *;
- unfold get_rewrite_direction; simpl.
- destruct dir'0; destruct dir'';
- (exact H0 ||
- unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
- (* the following mess with generalize/clear/intros is to help Coq resolving *)
- (* second order unification problems. *)
- generalize m c H0; clear H0 m c; inversion c;
- generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
- (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
- destruct dir'0; destruct dir'';
- (exact H0 ||
- unfold directed_relation_of_argument_class; simpl; apply s; exact H0).
- (* the following mess with generalize/clear/intros is to help Coq resolving *)
- (* second order unification problems. *)
- generalize m c H0; clear H0 m c; inversion c;
- generalize m c; clear m c; rewrite <- H1; rewrite <- H2; intros;
- (exact H3 || rewrite (opposite_direction_idempotent dir'0); apply H3).
- destruct dir'0; destruct dir''; (exact H0 || hnf; symmetry; exact H0).
-
- change
- (directed_relation_of_argument_class (get_rewrite_direction dir'' S) S
- (eq_rect _ (fun T : Type => T) (interp E1 m) _
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S))
- (eq_rect _ (fun T : Type => T) (interp E2 m) _
- (about_carrier_of_relation_class_and_relation_class_of_argument_class S)) /\
- relation_of_product_of_arguments dir'' _
- (interp_relation_class_list E1 m0) (interp_relation_class_list E2 m0)).
- split.
- clear m0 H1; destruct S; simpl in H0 |- *; unfold get_rewrite_direction; simpl.
- destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
- inversion c.
- rewrite <- H3; exact H0.
- rewrite (opposite_direction_idempotent dir'0); exact H0.
- destruct dir''; destruct dir'0; (exact H0 || hnf; apply s; exact H0).
- inversion c.
- rewrite <- H3; exact H0.
- rewrite (opposite_direction_idempotent dir'0); exact H0.
- destruct dir''; destruct dir'0; (exact H0 || hnf; symmetry; exact H0).
- exact H1.
- Qed.