summaryrefslogtreecommitdiff
path: root/theories/Relations/Rstar.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Rstar.v')
-rw-r--r--theories/Relations/Rstar.v139
1 files changed, 73 insertions, 66 deletions
diff --git a/theories/Relations/Rstar.v b/theories/Relations/Rstar.v
index 4e62d73a..91d2aaa4 100644
--- a/theories/Relations/Rstar.v
+++ b/theories/Relations/Rstar.v
@@ -6,82 +6,89 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Rstar.v 8642 2006-03-17 10:09:02Z notin $ i*)
+(*i $Id: Rstar.v 9245 2006-10-17 12:53:34Z notin $ i*)
(** Properties of a binary relation [R] on type [A] *)
Section Rstar.
+
+ Variable A : Type.
+ Variable R : A -> A -> Prop.
-Variable A : Type.
-Variable R : A -> A -> Prop.
-
-(** Definition of the reflexive-transitive closure [R*] of [R] *)
-(** Smallest reflexive [P] containing [R o P] *)
-
-Definition Rstar (x y:A) :=
- forall P:A -> A -> Prop,
- (forall u:A, P u u) -> (forall u v w:A, R u v -> P v w -> P u w) -> P x y.
+ (** Definition of the reflexive-transitive closure [R*] of [R] *)
+ (** Smallest reflexive [P] containing [R o P] *)
-Theorem Rstar_reflexive : forall x:A, Rstar x x.
- Proof
- fun (x:A) (P:A -> A -> Prop) (h1:forall u:A, P u u)
- (h2:forall u v w:A, R u v -> P v w -> P u w) =>
- h1 x.
+ Definition Rstar (x y:A) :=
+ forall P:A -> A -> Prop,
+ (forall u:A, P u u) -> (forall u v w:A, R u v -> P v w -> P u w) -> P x y.
-Theorem Rstar_R : forall x y z:A, R x y -> Rstar y z -> Rstar x z.
- Proof
- fun (x y z:A) (t1:R x y) (t2:Rstar y z) (P:A -> A -> Prop)
- (h1:forall u:A, P u u) (h2:forall u v w:A, R u v -> P v w -> P u w) =>
- h2 x y z t1 (t2 P h1 h2).
+ Theorem Rstar_reflexive : forall x:A, Rstar x x.
+ Proof.
+ unfold Rstar. intros x P P_refl RoP. apply P_refl.
+ Qed.
+
+ Theorem Rstar_R : forall x y z:A, R x y -> Rstar y z -> Rstar x z.
+ Proof.
+ intros x y z R_xy Rstar_yz.
+ unfold Rstar.
+ intros P P_refl RoP. apply RoP with (v:=y).
+ assumption.
+ apply Rstar_yz; assumption.
+ Qed.
+
+ (** We conclude with transitivity of [Rstar] : *)
+
+ Theorem Rstar_transitive :
+ forall x y z:A, Rstar x y -> Rstar y z -> Rstar x z.
+ Proof.
+ intros x y z Rstar_xy; unfold Rstar in Rstar_xy.
+ apply Rstar_xy; trivial.
+ intros u v w R_uv fz Rstar_wz.
+ apply Rstar_R with (y:=v); auto.
+ Qed.
+
+ (** Another characterization of [R*] *)
+ (** Smallest reflexive [P] containing [R o R*] *)
+
+ Definition Rstar' (x y:A) :=
+ forall P:A -> A -> Prop,
+ P x x -> (forall u:A, R x u -> Rstar u y -> P x y) -> P x y.
+
+ Theorem Rstar'_reflexive : forall x:A, Rstar' x x.
+ Proof.
+ unfold Rstar'; intros; assumption.
+ Qed.
-(** We conclude with transitivity of [Rstar] : *)
-
-Theorem Rstar_transitive :
- forall x y z:A, Rstar x y -> Rstar y z -> Rstar x z.
- Proof
- fun (x y z:A) (h:Rstar x y) =>
- h (fun u v:A => Rstar v z -> Rstar u z) (fun (u:A) (t:Rstar u z) => t)
- (fun (u v w:A) (t1:R u v) (t2:Rstar w z -> Rstar v z)
- (t3:Rstar w z) => Rstar_R u v z t1 (t2 t3)).
-
-(** Another characterization of [R*] *)
-(** Smallest reflexive [P] containing [R o R*] *)
-
-Definition Rstar' (x y:A) :=
- forall P:A -> A -> Prop,
- P x x -> (forall u:A, R x u -> Rstar u y -> P x y) -> P x y.
-
-Theorem Rstar'_reflexive : forall x:A, Rstar' x x.
- Proof
- fun (x:A) (P:A -> A -> Prop) (h:P x x)
- (h':forall u:A, R x u -> Rstar u x -> P x x) => h.
+ Theorem Rstar'_R : forall x y z:A, R x z -> Rstar z y -> Rstar' x y.
+ Proof.
+ unfold Rstar'. intros x y z Rxz Rstar_zy P Pxx RoP.
+ apply RoP with (u:=z); trivial.
+ Qed.
-Theorem Rstar'_R : forall x y z:A, R x z -> Rstar z y -> Rstar' x y.
- Proof
- fun (x y z:A) (t1:R x z) (t2:Rstar z y) (P:A -> A -> Prop)
- (h1:P x x) (h2:forall u:A, R x u -> Rstar u y -> P x y) =>
- h2 z t1 t2.
+ (** Equivalence of the two definitions: *)
+
+ Theorem Rstar'_Rstar : forall x y:A, Rstar' x y -> Rstar x y.
+ Proof.
+ intros x z Rstar'_xz; unfold Rstar' in Rstar'_xz.
+ apply Rstar'_xz.
+ exact (Rstar_reflexive x).
+ intro y; generalize x y z; exact Rstar_R.
+ Qed.
-(** Equivalence of the two definitions: *)
-
-Theorem Rstar'_Rstar : forall x y:A, Rstar' x y -> Rstar x y.
- Proof
- fun (x y:A) (h:Rstar' x y) =>
- h Rstar (Rstar_reflexive x) (fun u:A => Rstar_R x u y).
+ Theorem Rstar_Rstar' : forall x y:A, Rstar x y -> Rstar' x y.
+ Proof.
+ intros.
+ apply H.
+ exact Rstar'_reflexive.
+ intros u v w R_uv Rs'_vw. apply Rstar'_R with (z:=v).
+ assumption.
+ apply Rstar'_Rstar; assumption.
+ Qed.
+
+ (** Property of Commutativity of two relations *)
-Theorem Rstar_Rstar' : forall x y:A, Rstar x y -> Rstar' x y.
- Proof
- fun (x y:A) (h:Rstar x y) =>
- h Rstar' (fun u:A => Rstar'_reflexive u)
- (fun (u v w:A) (h1:R u v) (h2:Rstar' v w) =>
- Rstar'_R u w v h1 (Rstar'_Rstar v w h2)).
-
-
-(** Property of Commutativity of two relations *)
-
-Definition commut (A:Set) (R1 R2:A -> A -> Prop) :=
- forall x y:A,
- R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
-
+ Definition commut (A:Set) (R1 R2:A -> A -> Prop) :=
+ forall x y:A,
+ R1 y x -> forall z:A, R2 z y -> exists2 y' : A, R2 y' x & R1 z y'.
End Rstar.