summaryrefslogtreecommitdiff
path: root/theories/Reals/Rtrigo_fun.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rtrigo_fun.v')
-rw-r--r--theories/Reals/Rtrigo_fun.v149
1 files changed, 74 insertions, 75 deletions
diff --git a/theories/Reals/Rtrigo_fun.v b/theories/Reals/Rtrigo_fun.v
index bc2f62a8..b921ee7b 100644
--- a/theories/Reals/Rtrigo_fun.v
+++ b/theories/Reals/Rtrigo_fun.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2014 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -20,80 +20,79 @@ Local Open Scope R_scope.
Lemma Alembert_exp :
Un_cv (fun n:nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0.
Proof.
- unfold Un_cv; intros; elim (Rgt_dec eps 1); intro.
- split with 0%nat; intros; rewrite (simpl_fact n); unfold R_dist;
- rewrite (Rminus_0_r (Rabs (/ INR (S n))));
- rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0).
- intro; rewrite (Rabs_pos_eq (/ INR (S n))).
- cut (/ eps - 1 < 0).
- intro; generalize (Rlt_le_trans (/ eps - 1) 0 (INR n) H2 (pos_INR n));
- clear H2; intro; unfold Rminus in H2;
- generalize (Rplus_lt_compat_l 1 (/ eps + -1) (INR n) H2);
- replace (1 + (/ eps + -1)) with (/ eps); [ clear H2; intro | ring ].
- rewrite (Rplus_comm 1 (INR n)) in H2; rewrite <- (S_INR n) in H2;
- generalize (Rmult_gt_0_compat (/ INR (S n)) eps H1 H);
- intro; unfold Rgt in H3;
- generalize (Rmult_lt_compat_l (/ INR (S n) * eps) (/ eps) (INR (S n)) H3 H2);
- intro; rewrite (Rmult_assoc (/ INR (S n)) eps (/ eps)) in H4;
- rewrite (Rinv_r eps (Rlt_dichotomy_converse eps 0 (or_intror (eps < 0) H)))
- in H4; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H4;
- rewrite (Rmult_comm (/ INR (S n))) in H4;
- rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H4;
- rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (not_eq_sym (O_S n)))) in H4;
- rewrite (let (H1, H2) := Rmult_ne eps in H1) in H4;
- assumption.
- apply Rlt_minus; unfold Rgt in a; rewrite <- Rinv_1;
- apply (Rinv_lt_contravar 1 eps); auto;
- rewrite (let (H1, H2) := Rmult_ne eps in H2); unfold Rgt in H;
- assumption.
- unfold Rgt in H1; apply Rlt_le; assumption.
- unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
-(**)
- cut (0 <= up (/ eps - 1))%Z.
- intro; elim (IZN (up (/ eps - 1)) H0); intros; split with x; intros;
- rewrite (simpl_fact n); unfold R_dist;
+ unfold Un_cv; intros; destruct (Rgt_dec eps 1) as [Hgt|Hnotgt].
+ - split with 0%nat; intros; rewrite (simpl_fact n); unfold R_dist;
rewrite (Rminus_0_r (Rabs (/ INR (S n))));
rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0).
- intro; rewrite (Rabs_pos_eq (/ INR (S n))).
- cut (/ eps - 1 < INR x).
- intro ;
- generalize
- (Rlt_le_trans (/ eps - 1) (INR x) (INR n) H4
- (le_INR x n H2));
- clear H4; intro; unfold Rminus in H4;
- generalize (Rplus_lt_compat_l 1 (/ eps + -1) (INR n) H4);
- replace (1 + (/ eps + -1)) with (/ eps); [ clear H4; intro | ring ].
- rewrite (Rplus_comm 1 (INR n)) in H4; rewrite <- (S_INR n) in H4;
- generalize (Rmult_gt_0_compat (/ INR (S n)) eps H3 H);
- intro; unfold Rgt in H5;
- generalize (Rmult_lt_compat_l (/ INR (S n) * eps) (/ eps) (INR (S n)) H5 H4);
- intro; rewrite (Rmult_assoc (/ INR (S n)) eps (/ eps)) in H6;
- rewrite (Rinv_r eps (Rlt_dichotomy_converse eps 0 (or_intror (eps < 0) H)))
- in H6; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H6;
- rewrite (Rmult_comm (/ INR (S n))) in H6;
- rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H6;
- rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (not_eq_sym (O_S n)))) in H6;
- rewrite (let (H1, H2) := Rmult_ne eps in H1) in H6;
- assumption.
- cut (IZR (up (/ eps - 1)) = IZR (Z.of_nat x));
- [ intro | rewrite H1; trivial ].
- elim (archimed (/ eps - 1)); intros; clear H6; unfold Rgt in H5;
- rewrite H4 in H5; rewrite INR_IZR_INZ; assumption.
- unfold Rgt in H1; apply Rlt_le; assumption.
- unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
- apply (le_O_IZR (up (/ eps - 1)));
- apply (Rle_trans 0 (/ eps - 1) (IZR (up (/ eps - 1)))).
- generalize (Rnot_gt_le eps 1 b); clear b; unfold Rle; intro; elim H0;
- clear H0; intro.
- left; unfold Rgt in H;
- generalize (Rmult_lt_compat_l (/ eps) eps 1 (Rinv_0_lt_compat eps H) H0);
- rewrite
- (Rinv_l eps
- (not_eq_sym (Rlt_dichotomy_converse 0 eps (or_introl (0 > eps) H))))
- ; rewrite (let (H1, H2) := Rmult_ne (/ eps) in H1);
- intro; fold (/ eps - 1 > 0); apply Rgt_minus;
- unfold Rgt; assumption.
- right; rewrite H0; rewrite Rinv_1; symmetry; apply Rminus_diag_eq; auto.
- elim (archimed (/ eps - 1)); intros; clear H1; unfold Rgt in H0; apply Rlt_le;
- assumption.
+ intro; rewrite (Rabs_pos_eq (/ INR (S n))).
+ cut (/ eps - 1 < 0).
+ intro H2; generalize (Rlt_le_trans (/ eps - 1) 0 (INR n) H2 (pos_INR n));
+ clear H2; intro; unfold Rminus in H2;
+ generalize (Rplus_lt_compat_l 1 (/ eps + -1) (INR n) H2);
+ replace (1 + (/ eps + -1)) with (/ eps); [ clear H2; intro | ring ].
+ rewrite (Rplus_comm 1 (INR n)) in H2; rewrite <- (S_INR n) in H2;
+ generalize (Rmult_gt_0_compat (/ INR (S n)) eps H1 H);
+ intro; unfold Rgt in H3;
+ generalize (Rmult_lt_compat_l (/ INR (S n) * eps) (/ eps) (INR (S n)) H3 H2);
+ intro; rewrite (Rmult_assoc (/ INR (S n)) eps (/ eps)) in H4;
+ rewrite (Rinv_r eps (Rlt_dichotomy_converse eps 0 (or_intror (eps < 0) H)))
+ in H4; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H4;
+ rewrite (Rmult_comm (/ INR (S n))) in H4;
+ rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H4;
+ rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (not_eq_sym (O_S n)))) in H4;
+ rewrite (let (H1, H2) := Rmult_ne eps in H1) in H4;
+ assumption.
+ apply Rlt_minus; unfold Rgt in Hgt; rewrite <- Rinv_1;
+ apply (Rinv_lt_contravar 1 eps); auto;
+ rewrite (let (H1, H2) := Rmult_ne eps in H2); unfold Rgt in H;
+ assumption.
+ unfold Rgt in H1; apply Rlt_le; assumption.
+ unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+ - cut (0 <= up (/ eps - 1))%Z.
+ intro; elim (IZN (up (/ eps - 1)) H0); intros; split with x; intros;
+ rewrite (simpl_fact n); unfold R_dist;
+ rewrite (Rminus_0_r (Rabs (/ INR (S n))));
+ rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0).
+ intro; rewrite (Rabs_pos_eq (/ INR (S n))).
+ cut (/ eps - 1 < INR x).
+ intro ;
+ generalize
+ (Rlt_le_trans (/ eps - 1) (INR x) (INR n) H4
+ (le_INR x n H2));
+ clear H4; intro; unfold Rminus in H4;
+ generalize (Rplus_lt_compat_l 1 (/ eps + -1) (INR n) H4);
+ replace (1 + (/ eps + -1)) with (/ eps); [ clear H4; intro | ring ].
+ rewrite (Rplus_comm 1 (INR n)) in H4; rewrite <- (S_INR n) in H4;
+ generalize (Rmult_gt_0_compat (/ INR (S n)) eps H3 H);
+ intro; unfold Rgt in H5;
+ generalize (Rmult_lt_compat_l (/ INR (S n) * eps) (/ eps) (INR (S n)) H5 H4);
+ intro; rewrite (Rmult_assoc (/ INR (S n)) eps (/ eps)) in H6;
+ rewrite (Rinv_r eps (Rlt_dichotomy_converse eps 0 (or_intror (eps < 0) H)))
+ in H6; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H6;
+ rewrite (Rmult_comm (/ INR (S n))) in H6;
+ rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H6;
+ rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (not_eq_sym (O_S n)))) in H6;
+ rewrite (let (H1, H2) := Rmult_ne eps in H1) in H6;
+ assumption.
+ cut (IZR (up (/ eps - 1)) = IZR (Z.of_nat x));
+ [ intro | rewrite H1; trivial ].
+ elim (archimed (/ eps - 1)); intros; clear H6; unfold Rgt in H5;
+ rewrite H4 in H5; rewrite INR_IZR_INZ; assumption.
+ unfold Rgt in H1; apply Rlt_le; assumption.
+ unfold Rgt; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+ apply (le_O_IZR (up (/ eps - 1)));
+ apply (Rle_trans 0 (/ eps - 1) (IZR (up (/ eps - 1)))).
+ generalize (Rnot_gt_le eps 1 Hnotgt); clear Hnotgt; unfold Rle; intro; elim H0;
+ clear H0; intro.
+ left; unfold Rgt in H;
+ generalize (Rmult_lt_compat_l (/ eps) eps 1 (Rinv_0_lt_compat eps H) H0);
+ rewrite
+ (Rinv_l eps
+ (not_eq_sym (Rlt_dichotomy_converse 0 eps (or_introl (0 > eps) H))))
+ ; rewrite (let (H1, H2) := Rmult_ne (/ eps) in H1);
+ intro; fold (/ eps - 1 > 0); apply Rgt_minus;
+ unfold Rgt; assumption.
+ right; rewrite H0; rewrite Rinv_1; symmetry; apply Rminus_diag_eq; auto.
+ elim (archimed (/ eps - 1)); intros; clear H1; unfold Rgt in H0; apply Rlt_le;
+ assumption.
Qed.