summaryrefslogtreecommitdiff
path: root/theories/Reals/Rtrigo_fun.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Reals/Rtrigo_fun.v')
-rw-r--r--theories/Reals/Rtrigo_fun.v109
1 files changed, 109 insertions, 0 deletions
diff --git a/theories/Reals/Rtrigo_fun.v b/theories/Reals/Rtrigo_fun.v
new file mode 100644
index 00000000..b0f29e5c
--- /dev/null
+++ b/theories/Reals/Rtrigo_fun.v
@@ -0,0 +1,109 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i $Id: Rtrigo_fun.v,v 1.7.2.1 2004/07/16 19:31:15 herbelin Exp $ i*)
+
+Require Import Rbase.
+Require Import Rfunctions.
+Require Import SeqSeries.
+Open Local Scope R_scope.
+
+(*****************************************************************)
+(* To define transcendental functions *)
+(* *)
+(*****************************************************************)
+(*****************************************************************)
+(* For exponential function *)
+(* *)
+(*****************************************************************)
+
+(*********)
+Lemma Alembert_exp :
+ Un_cv (fun n:nat => Rabs (/ INR (fact (S n)) * / / INR (fact n))) 0.
+unfold Un_cv in |- *; intros; elim (Rgt_dec eps 1); intro.
+split with 0%nat; intros; rewrite (simpl_fact n); unfold R_dist in |- *;
+ rewrite (Rminus_0_r (Rabs (/ INR (S n))));
+ rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0).
+intro; rewrite (Rabs_pos_eq (/ INR (S n))).
+cut (/ eps - 1 < 0).
+intro; generalize (Rlt_le_trans (/ eps - 1) 0 (INR n) H2 (pos_INR n));
+ clear H2; intro; unfold Rminus in H2;
+ generalize (Rplus_lt_compat_l 1 (/ eps + -1) (INR n) H2);
+ replace (1 + (/ eps + -1)) with (/ eps); [ clear H2; intro | ring ].
+rewrite (Rplus_comm 1 (INR n)) in H2; rewrite <- (S_INR n) in H2;
+ generalize (Rmult_gt_0_compat (/ INR (S n)) eps H1 H);
+ intro; unfold Rgt in H3;
+ generalize (Rmult_lt_compat_l (/ INR (S n) * eps) (/ eps) (INR (S n)) H3 H2);
+ intro; rewrite (Rmult_assoc (/ INR (S n)) eps (/ eps)) in H4;
+ rewrite (Rinv_r eps (Rlt_dichotomy_converse eps 0 (or_intror (eps < 0) H)))
+ in H4; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H4;
+ rewrite (Rmult_comm (/ INR (S n))) in H4;
+ rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H4;
+ rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (sym_not_equal (O_S n)))) in H4;
+ rewrite (let (H1, H2) := Rmult_ne eps in H1) in H4;
+ assumption.
+apply Rlt_minus; unfold Rgt in a; rewrite <- Rinv_1;
+ apply (Rinv_lt_contravar 1 eps); auto;
+ rewrite (let (H1, H2) := Rmult_ne eps in H2); unfold Rgt in H;
+ assumption.
+unfold Rgt in H1; apply Rlt_le; assumption.
+unfold Rgt in |- *; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+(**)
+cut (0 <= up (/ eps - 1))%Z.
+intro; elim (IZN (up (/ eps - 1)) H0); intros; split with x; intros;
+ rewrite (simpl_fact n); unfold R_dist in |- *;
+ rewrite (Rminus_0_r (Rabs (/ INR (S n))));
+ rewrite (Rabs_Rabsolu (/ INR (S n))); cut (/ INR (S n) > 0).
+intro; rewrite (Rabs_pos_eq (/ INR (S n))).
+cut (/ eps - 1 < INR x).
+intro;
+ generalize
+ (Rlt_le_trans (/ eps - 1) (INR x) (INR n) H4
+ (le_INR x n ((fun (n m:nat) (H:(m >= n)%nat) => H) x n H2)));
+ clear H4; intro; unfold Rminus in H4;
+ generalize (Rplus_lt_compat_l 1 (/ eps + -1) (INR n) H4);
+ replace (1 + (/ eps + -1)) with (/ eps); [ clear H4; intro | ring ].
+rewrite (Rplus_comm 1 (INR n)) in H4; rewrite <- (S_INR n) in H4;
+ generalize (Rmult_gt_0_compat (/ INR (S n)) eps H3 H);
+ intro; unfold Rgt in H5;
+ generalize (Rmult_lt_compat_l (/ INR (S n) * eps) (/ eps) (INR (S n)) H5 H4);
+ intro; rewrite (Rmult_assoc (/ INR (S n)) eps (/ eps)) in H6;
+ rewrite (Rinv_r eps (Rlt_dichotomy_converse eps 0 (or_intror (eps < 0) H)))
+ in H6; rewrite (let (H1, H2) := Rmult_ne (/ INR (S n)) in H1) in H6;
+ rewrite (Rmult_comm (/ INR (S n))) in H6;
+ rewrite (Rmult_assoc eps (/ INR (S n)) (INR (S n))) in H6;
+ rewrite (Rinv_l (INR (S n)) (not_O_INR (S n) (sym_not_equal (O_S n)))) in H6;
+ rewrite (let (H1, H2) := Rmult_ne eps in H1) in H6;
+ assumption.
+cut (IZR (up (/ eps - 1)) = IZR (Z_of_nat x));
+ [ intro | rewrite H1; trivial ].
+elim (archimed (/ eps - 1)); intros; clear H6; unfold Rgt in H5;
+ rewrite H4 in H5; rewrite INR_IZR_INZ; assumption.
+unfold Rgt in H1; apply Rlt_le; assumption.
+unfold Rgt in |- *; apply Rinv_0_lt_compat; apply lt_INR_0; apply lt_O_Sn.
+apply (le_O_IZR (up (/ eps - 1)));
+ apply (Rle_trans 0 (/ eps - 1) (IZR (up (/ eps - 1)))).
+generalize (Rnot_gt_le eps 1 b); clear b; unfold Rle in |- *; intro; elim H0;
+ clear H0; intro.
+left; unfold Rgt in H;
+ generalize (Rmult_lt_compat_l (/ eps) eps 1 (Rinv_0_lt_compat eps H) H0);
+ rewrite
+ (Rinv_l eps
+ (sym_not_eq (Rlt_dichotomy_converse 0 eps (or_introl (0 > eps) H))))
+ ; rewrite (let (H1, H2) := Rmult_ne (/ eps) in H1);
+ intro; fold (/ eps - 1 > 0) in |- *; apply Rgt_minus;
+ unfold Rgt in |- *; assumption.
+right; rewrite H0; rewrite Rinv_1; apply sym_eq; apply Rminus_diag_eq; auto.
+elim (archimed (/ eps - 1)); intros; clear H1; unfold Rgt in H0; apply Rlt_le;
+ assumption.
+Qed.
+
+
+
+
+